Patents by Inventor Feike Jansen

Feike Jansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11353549
    Abstract: A data processing device and method for detecting interference in a FMCW radar system are described. For each of a plurality of transmitted chirps of the radar system, a high pass filter is applied to a receiver signal of a receiver channel of a radar receiver during an acquisition time corresponding to a transmitted chirp to remove those parts of the receiver signal corresponding to a reflected chirp having a power at the radar receiver greater than the noise power of the radar receiver of the radar system. The receiver signal power is calculated from the high pass filtered receiver signal. The receiver signal power is compared with a threshold noise power based on an estimate of the thermal noise of the radar receiver to determine whether the receiver signal corresponds to an interfered received chirp including interference or a non-interfered received chirp not including interference.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: June 7, 2022
    Assignee: NXP B.V.
    Inventors: Feike Jansen, Francesco Laghezza
  • Publication number: 20200072941
    Abstract: A data processing device and method for detecting interference in a FMCW radar system are described. For each of a plurality of transmitted chirps of the radar system, a high pass filter is applied to a receiver signal of a receiver channel of a radar receiver during an acquisition time corresponding to a transmitted chirp to remove those parts of the receiver signal corresponding to a reflected chirp having a power at the radar receiver greater than the noise power of the radar receiver of the radar system. The receiver signal power is calculated from the high pass filtered receiver signal. The receiver signal power is compared with a threshold noise power based on an estimate of the thermal noise of the radar receiver to determine whether the receiver signal corresponds to an interfered received chirp including interference or a non-interfered received chirp not including interference.
    Type: Application
    Filed: May 15, 2019
    Publication date: March 5, 2020
    Inventors: Feike Jansen, Francesco Laghezza
  • Patent number: 9726756
    Abstract: A multichip radar system is disclosed, comprising a plurality of configurable ICs, and a digital interface therebetween, each configurable IC being configurable to operate as a master IC and as a slave IC. The configurable ICs may be similar or identical, and have an allocated measurement range. Each configurable IC comprises: a down-converter; an ADC; a digital signal processor; and a transmitter to transmit a radar signal. One is configured as a master IC and to transmit a radar signal and each of the other configurable ICs to operate as a slave IC. Each configurable IC is adapted to use a common Local Oscillator signal, a common clock signal, and a common timing signal for determining at least the start of the common sampling window. A method of operating such a multichip radar system is also disclosed, as is a configurable IC or radar IC suitable for such a system.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: August 8, 2017
    Assignee: NXP B.V.
    Inventor: Feike Jansen
  • Patent number: 9448300
    Abstract: Aspects of the present disclosure are directed to apparatuses and methods involving the detection of signal characteristics. As may be implemented in accordance with one or more embodiments, an apparatus includes a radar or sonar transceiver that transmits signals and receives reflections of the transmitted signals. A data compression circuit determines a compression factor based on characteristics of the signals, such as may relate to a channel over which the signal passes and/or related aspects of an object from which the signals are reflected (e.g., velocity, trajectory and distance). Data representing the signals is compressed as a function of the determined compression factor.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: September 20, 2016
    Assignee: NXP B.V.
    Inventors: Feike Jansen, Zoran Zivkovic
  • Publication number: 20150346321
    Abstract: Aspects of the present disclosure are directed to apparatuses and methods involving the detection of signal characteristics. As may be implemented in accordance with one or more embodiments, an apparatus includes a radar or sonar transceiver that transmits signals and receives reflections of the transmitted signals. A data compression circuit determines a compression factor based on characteristics of the signals, such as may relate to a channel over which the signal passes and/or related aspects of an object from which the signals are reflected (e.g., velocity, trajectory and distance). Data representing the signals is compressed as a function of the determined compression factor.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicant: NXP B.V.
    Inventors: Feike Jansen, Zoran Zivkovic
  • Publication number: 20150153445
    Abstract: A multichip radar system is disclosed, comprising a plurality of configurable ICs, and a digital interface therebetween, each configurable IC being configurable to operate as a master IC and as a slave IC. The configurable ICs may be similar or identical, and have an allocated measurement range. Each configurable IC comprises: a down-converter; an ADC; a digital signal processor; and a transmitter to transmit a radar signal. One is configured as a master IC and to transmit a radar signal and each of the other configurable ICs to operate as a slave IC. Each configurable IC is adapted to use a common Local Oscillator signal, a common clock signal, and a common timing signal for determining at least the start of the common sampling window. A method of operating such a multichip radar system is also disclosed, as is a configurable IC or radar IC suitable for such a system.
    Type: Application
    Filed: November 12, 2014
    Publication date: June 4, 2015
    Inventor: Feike Jansen