Patents by Inventor Felix A. Marti

Felix A. Marti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240061713
    Abstract: A new processing architecture is described that utilizes a data processing unit (DPU). Unlike conventional compute models that are centered around a central processing unit (CPU), the DPU that is designed for a data-centric computing model in which the data processing tasks are centered around the DPU. The DPU may be viewed as a highly programmable, high-performance I/O and data-processing hub designed to aggregate and process network and storage I/O to and from other devices. The DPU comprises a network interface to connect to a network, one or more host interfaces to connect to one or more application processors or storage devices, and a multi-core processor with two or more processing cores executing a run-to-completion data plane operating system and one or more processing cores executing a multi-tasking control plane operating system. The data plane operating system is configured to support software functions for performing the data processing tasks.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal, Bertrand Serlet
  • Patent number: 11842216
    Abstract: A new processing architecture is described that utilizes a data processing unit (DPU). Unlike conventional compute models that are centered around a central processing unit (CPU), the DPU that is designed for a data-centric computing model in which the data processing tasks are centered around the DPU. The DPU may be viewed as a highly programmable, high-performance I/O and data-processing hub designed to aggregate and process network and storage I/O to and from other devices. The DPU comprises a network interface to connect to a network, one or more host interfaces to connect to one or more application processors or storage devices, and a multi-core processor with two or more processing cores executing a run-to-completion data plane operating system and one or more processing cores executing a multi-tasking control plane operating system. The data plane operating system is configured to support software functions for performing the data processing tasks.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: December 12, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal, Bertrand Serlet
  • Patent number: 11829295
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: November 28, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim
  • Patent number: 11824683
    Abstract: A new processing architecture is described in which a data processing unit (DPU) is utilized within a device. Unlike conventional compute models that are centered around a central processing unit (CPU), example implementations described herein leverage a DPU that is specially designed and optimized for a data-centric computing model in which the data processing tasks are centered around, and the primary responsibility of, the DPU. For example, various data processing tasks, such as networking, security, and storage, as well as related work acceleration, distribution and scheduling, and other such tasks are the domain of the DPU. The DPU may be viewed as a highly programmable, high-performance input/output (I/O) and data-processing hub designed to aggregate and process network and storage I/O to and from multiple other components and/or devices. This frees resources of the CPU, if present, for computing-intensive tasks.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 21, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal
  • Patent number: 11734179
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: August 22, 2023
    Assignee: Fungible, Inc.
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim
  • Publication number: 20230224247
    Abstract: Techniques are described for providing a scaled-out transport supported by interconnected data processing units (DPUs) that operates as a single system bus connection proxy for device-to-device communications within a data center. As one example, this disclosure describes techniques for providing a Peripheral Component Interconnect Express (PCIe) proxy for device-to-device communications employing the PCIe standard. The disclosed techniques include adding PCIe proxy logic on top of a host unit of a DPU to expose a PCIe proxy model to application processors, storage devices, network interface controllers, field programmable gate arrays, or other PCIe endpoint devices. The PCIe proxy model may be implemented as a physically distributed Ethernet-based switch fabric with PCIe proxy logic at the edge and fronting the PCIe endpoint devices. The interconnected DPUs and the distributed Ethernet-based switch fabric together provide a reliable, low-latency, and scaled-out transport that operates as a PCIe proxy.
    Type: Application
    Filed: March 23, 2023
    Publication date: July 13, 2023
    Inventors: Wael Noureddine, Felix A. Marti, Aibing Zhou, Dmitriy Leonidovich Budko, Gaurav Gupte, Hoai Vu Thanh Tran, Aravind Vidhyasagar Lappasi, Leith Alan Leedom, Rajesh G. Nair
  • Publication number: 20230205702
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim
  • Patent number: 11637773
    Abstract: Techniques are described for providing a scaled-out transport supported by interconnected data processing units (DPUs) that operates as a single system bus connection proxy for device-to-device communications within a data center. As one example, this disclosure describes techniques for providing a Peripheral Component Interconnect Express (PCIe) proxy for device-to-device communications employing the PCIe standard. The disclosed techniques include adding PCIe proxy logic on top of a host unit of a DPU to expose a PCIe proxy model to application processors, storage devices, network interface controllers, field programmable gate arrays, or other PCIe endpoint devices. The PCIe proxy model may be implemented as a physically distributed Ethernet-based switch fabric with PCIe proxy logic at the edge and fronting the PCIe endpoint devices. The interconnected DPUs and the distributed Ethernet-based switch fabric together provide a reliable, low-latency, and scaled-out transport that operates as a PCIe proxy.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: April 25, 2023
    Assignee: FUNGIBLE, INC.
    Inventors: Wael Noureddine, Felix A. Marti, Aibing Zhou, Dmitriy Leonidovich Budko, Gaurav Gupte, Hoai Vu Thanh Tran, Aravind Vidhyasagar Lappasi, Leith Alan Leedom, Rajesh G. Nair
  • Patent number: 11546189
    Abstract: An access node that can be configured and optimized to perform input and output (I/O) tasks, such as storage and retrieval of data to and from network devices (such as solid state drives), networking, data processing, and the like. For example, the access node may be configured to receive data to be processed, wherein the access node includes a plurality of processing cores, a data network fabric, and a control network fabric; receive, over the control network fabric, a work unit message indicating a processing task to be performed a processing core; and process the work unit message, wherein processing the work unit message includes retrieving data associated with the work unit message over the data network fabric.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: January 3, 2023
    Assignee: Fungible, Inc.
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Paul Kim, Rajan Goyal, Aibing Zhou
  • Publication number: 20220224564
    Abstract: A new processing architecture is described in which a data processing unit (DPU) is utilized within a device. Unlike conventional compute models that are centered around a central processing unit (CPU), example implementations described herein leverage a DPU that is specially designed and optimized for a data-centric computing model in which the data processing tasks are centered around, and the primary responsibility of, the DPU. For example, various data processing tasks, such as networking, security, and storage, as well as related work acceleration, distribution and scheduling, and other such tasks are the domain of the DPU. The DPU may be viewed as a highly programmable, high-performance input/output (I/O) and data-processing hub designed to aggregate and process network and storage I/O to and from multiple other components and/or devices. This frees resources of the CPU, if present, for computing-intensive tasks.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal
  • Patent number: 11303472
    Abstract: A new processing architecture is described in which a data processing unit (DPU) is utilized within a device. Unlike conventional compute models that are centered around a central processing unit (CPU), example implementations described herein leverage a DPU that is specially designed and optimized for a data-centric computing model in which the data processing tasks are centered around, and the primary responsibility of, the DPU. For example, various data processing tasks, such as networking, security, and storage, as well as related work acceleration, distribution and scheduling, and other such tasks are the domain of the DPU. The DPU may be viewed as a highly programmable, high-performance input/output (I/O) and data-processing hub designed to aggregate and process network and storage I/O to and from multiple other components and/or devices. This frees resources of the CPU, if present, for computing-intensive tasks.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: April 12, 2022
    Assignee: Fungible, Inc.
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal
  • Publication number: 20210349824
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Application
    Filed: June 28, 2021
    Publication date: November 11, 2021
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim
  • Publication number: 20210250285
    Abstract: Techniques are described for providing a scaled-out transport supported by interconnected data processing units (DPUs) that operates as a single system bus connection proxy for device-to-device communications within a data center. As one example, this disclosure describes techniques for providing a Peripheral Component Interconnect Express (PCIe) proxy for device-to-device communications employing the PCIe standard. The disclosed techniques include adding PCIe proxy logic on top of a host unit of a DPU to expose a PCIe proxy model to application processors, storage devices, network interface controllers, field programmable gate arrays, or other PCIe endpoint devices. The PCIe proxy model may be implemented as a physically distributed Ethernet-based switch fabric with PCIe proxy logic at the edge and fronting the PCIe endpoint devices. The interconnected DPUs and the distributed Ethernet-based switch fabric together provide a reliable, low-latency, and scaled-out transport that operates as a PCIe proxy.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 12, 2021
    Inventors: Wael Noureddine, Felix A. Marti, Aibing Zhou, Dmitriy Leonidovich Budko, Gaurav Gupte, Hoai Vu Thanh Tran, Aravind Vidhyasagar Lappasi, Leith Alan Leedom, Rajesh G. Nair
  • Patent number: 11048634
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: June 29, 2021
    Assignee: Fungible, Inc.
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim
  • Patent number: 10841245
    Abstract: Techniques are described in which a device, such as a network device, compute node or storage device, is configured to utilize a work unit (WU) stack data structure in a multiple core processor system to help manage an event driven, run-to-completion programming model of an operating system executed by the multiple core processor system. The techniques may be particularly useful when processing streams of data at high rates. The WU stack may be viewed as a stack of continuation work units used to supplement a typical program stack as an efficient means of moving the program stack between cores. The work unit data structure itself is a building block in the WU stack to compose a processing pipeline and services execution. The WU stack structure carries state, memory, and other information in auxiliary variables.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: November 17, 2020
    Assignee: Fungible, Inc.
    Inventors: Charles Edward Gray, Bertrand Serlet, Felix A. Marti, Wael Noureddine, Pratapa Reddy Vaka
  • Publication number: 20200356414
    Abstract: A new processing architecture is described that utilizes a data processing unit (DPU). Unlike conventional compute models that are centered around a central processing unit (CPU), the DPU that is designed for a data-centric computing model in which the data processing tasks are centered around the DPU. The DPU may be viewed as a highly programmable, high-performance I/O and data-processing hub designed to aggregate and process network and storage I/O to and from other devices. The DPU comprises a network interface to connect to a network, one or more host interfaces to connect to one or more application processors or storage devices, and a multi-core processor with two or more processing cores executing a run-to-completion data plane operating system and one or more processing cores executing a multi-tasking control plane operating system. The data plane operating system is configured to support software functions for performing the data processing tasks.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal, Bertrand Serlet
  • Publication number: 20200280462
    Abstract: An access node that can be configured and optimized to perform input and output (I/O) tasks, such as storage and retrieval of data to and from network devices (such as solid state drives), networking, data processing, and the like. For example, the access node may be configured to receive data to be processed, wherein the access node includes a plurality of processing cores, a data network fabric, and a control network fabric; receive, over the control network fabric, a work unit message indicating a processing task to be performed a processing core; and process the work unit message, wherein processing the work unit message includes retrieving data associated with the work unit message over the data network fabric.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Paul Kim, Rajan Goyal, Aibing Zhou
  • Patent number: 10725825
    Abstract: A new processing architecture is described that utilizes a data processing unit (DPU). Unlike conventional compute models that are centered around a central processing unit (CPU), the DPU that is designed for a data-centric computing model in which the data processing tasks are centered around the DPU. The DPU may be viewed as a highly programmable, high-performance I/O and data-processing hub designed to aggregate and process network and storage I/O to and from other devices. The DPU comprises a network interface to connect to a network, one or more host interfaces to connect to one or more application processors or storage devices, and a multi-core processor with two or more processing cores executing a run-to-completion data plane operating system and one or more processing cores executing a multi-tasking control plane operating system. The data plane operating system is configured to support software functions for performing the data processing tasks.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: July 28, 2020
    Assignee: Fungible, Inc.
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Wael Noureddine, Felix A. Marti, Deepak Goel, Rajan Goyal, Bertrand Serlet
  • Patent number: 10659254
    Abstract: A highly-programmable access node is described that can be configured and optimized to perform input and output (I/O) tasks, such as storage and retrieval of data to and from storage devices (such as solid state drives), networking, data processing, and the like. For example, the access node may be configured to execute a large number of data I/O processing tasks relative to a number of instructions that are processed. The access node may be highly programmable such that the access node may expose hardware primitives for selecting and programmatically configuring data processing operations. As one example, the access node may be used to provide high-speed connectivity and I/O operations between and on behalf of computing devices and storage components of a network, such as for providing interconnectivity between those devices and a switch fabric of a data center.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 19, 2020
    Assignee: Fungible, Inc.
    Inventors: Pradeep Sindhu, Jean-Marc Frailong, Bertrand Serlet, Wael Noureddine, Felix A. Marti, Deepak Goel, Paul Kim, Rajan Goyal, Aibing Zhou
  • Publication number: 20200151101
    Abstract: Techniques are described in which a system having multiple processing units processes a series of work units in a processing pipeline, where some or all of the work units access or manipulate data stored in non-coherent memory. In one example, this disclosure describes a method that includes identifying, prior to completing processing of a first work unit with a processing unit of a processor having multiple processing units, a second work unit that is expected to be processed by the processing unit after the first work unit. The method also includes processing the first work unit, and prefetching, from non-coherent memory, data associated with the second work unit into a second cache segment of the buffer cache, wherein prefetching the data associated with the second work unit occurs concurrently with at least a portion of the processing of the first work unit by the processing unit.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Wael Noureddine, Jean-Marc Frailong, Felix A. Marti, Charles Edward Gray, Paul Kim