Patents by Inventor Felix Kozakevich

Felix Kozakevich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8222155
    Abstract: A method in a plasma processing system for etching a feature through a given layer on a semiconductor substrate. The method includes placing the substrate in a plasma processing chamber of the plasma processing system. The method also includes flowing an etchant gas mixture into the plasma processing chamber, the etchant gas mixture being configured to etch the given layer. The method additionally includes striking a plasma from the etchant source gas. Furthermore, the method includes etching the feature at least partially through the given layer while applying a bias RF signal to the substrate, the bias RF signal having a bias RF frequency of between about 45 MHz and about 75 MHz. The bias RF signal further has a bias RF power component that is configured to cause the etch feature to be etched with an etch selectivity to a second layer of the substrate that is higher than a predefined selectivity threshold.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: July 17, 2012
    Assignee: Lam Research Corporation
    Inventors: Kenji Takeshita, Odette Turmel, Felix Kozakevich, Eric Hudson
  • Patent number: 8000082
    Abstract: An electrostatic chuck assembly having a dielectric material and/or having a cavity with varying thickness, profile and/or shape is disclosed. The electrostatic chuck assembly includes a conductive support and an electrostatic chuck ceramic layer. A dielectric layer or insert is located between the conductive support and an electrostatic chuck ceramic layer. A cavity is located in a seating surface of the electrostatic chuck ceramic layer. An embedded pole pattern can be optionally incorporated in the electrostatic chuck assembly. Methods of manufacturing the electrostatic chuck assembly are disclosed as are methods to improve the uniformity of a flux field above a workpiece during a plasma processing process.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: August 16, 2011
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Eric Lenz, Lumin Li, Felix Kozakevich
  • Patent number: 7749353
    Abstract: A method for etching a high aspect ratio feature through a mask into a layer to be etched over a substrate is provided. The substrate is placed in a process chamber, which is able to provide RF power at a first frequency, a second frequency different than the first frequency, and a third frequency different than the first and second frequency. An etchant gas is provided to the process chamber. A first etch step is provided, where the first frequency, the second frequency, and the third frequency are at power settings for the first etch step. A second etch step is provided, where the first frequency, the second frequency, and the third frequency are at a different power setting.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 6, 2010
    Assignee: Lam Research Corporation
    Inventors: Camelia Rusu, Rajinder Dhindsa, Eric A. Hudson, Mukund Srinivasan, Lumin Li, Felix Kozakevich
  • Publication number: 20100126847
    Abstract: A number of RF power transmission paths are defined to extend from an RF power source through a matching network, through a transmit electrode, through a plasma to a number of return electrodes. A number of tuning elements are respectively disposed within the number of RF power transmission paths. Each tuning element is defined to adjust an amount of RF power to be transmitted through the RF power transmission path within which the tuning element is disposed. A plasma density within a vicinity of a particular RF power transmission path is directly proportional to the amount of RF power transmitted through the particular RF power transmission path. Therefore, adjustment of RF power transmitted through the RF power transmission paths, as afforded by the tuning element, enables control of a plasma density profile across a substrate.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, Lumin Li, Dave Trussell
  • Patent number: 7683289
    Abstract: A number of RF power transmission paths are defined to extend from an RF power source through a matching network, through a transmit electrode, through a plasma to a number of return electrodes. A number of tuning elements are respectively disposed within the number of RF power transmission paths. Each tuning element is defined to adjust an amount of RF power to be transmitted through the RF power transmission path within which the tuning element is disposed. A plasma density within a vicinity of a particular RF power transmission path is directly proportional to the amount of RF power transmitted through the particular RF power transmission path. Therefore, adjustment of RF power transmitted through the RF power transmission paths, as afforded by the tuning element, enables control of a plasma density profile across a substrate.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 23, 2010
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, Lumin Li, Dave Trussell
  • Publication number: 20090174983
    Abstract: An electrostatic chuck assembly having a dielectric material and/or having a cavity with varying thickness, profile and/or shape is disclosed. The electrostatic chuck assembly includes a conductive support and an electrostatic chuck ceramic layer. A dielectric layer or insert is located between the conductive support and an electrostatic chuck ceramic layer. A cavity is located in a seating surface of the electrostatic chuck ceramic layer. An embedded pole pattern can be optionally incorporated in the electrostatic chuck assembly. Methods of manufacturing the electrostatic chuck assembly are disclosed as are methods to improve the uniformity of a flux field above a workpiece during a plasma processing process.
    Type: Application
    Filed: March 17, 2009
    Publication date: July 9, 2009
    Applicant: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Eric Lenz, Lumin Li, Felix Kozakevich
  • Patent number: 7525787
    Abstract: An electrostatic chuck assembly having a dielectric material and/or having a cavity with varying thickness, profile and/or shape is disclosed. The electrostatic chuck assembly includes a conductive support and an electrostatic chuck ceramic layer. A dielectric layer or insert is located between the conductive support and an electrostatic chuck ceramic layer. A cavity is located in a seating surface of the electrostatic chuck ceramic layer. An embedded pole pattern can be optionally incorporated in the electrostatic chuck assembly. Methods of manufacturing the electrostatic chuck assembly are disclosed as are methods to improve the uniformity of a flux field above a workpiece during a plasma processing process.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 28, 2009
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Eric Lenz, Lumin Li, Felix Kozakevich
  • Patent number: 7521362
    Abstract: A method in a plasma processing system for etching a feature through a dielectric layer of a dual damascene stack on a semiconductor substrate is disclosed. The method includes placing the substrate in a plasma processing chamber of the plasma processing system. The method further includes flowing an etchant gas mixture into the plasma processing chamber, the etchant gas mixture being configured to etch the dielectric layer. The method additionally includes striking a plasma from the etchant source gas. The method also includes etching the feature through the dielectric layer while applying a bias RF signal to the substrate, the bias RF signal having a bias RF frequency of between about 27 MHz and about 90 MHz. The bias RF signal further has a bias RF power component that is configured to cause the feature to be etched in accordance to predefined etch rate parameters and etch profile parameters at the bias RF frequency.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: April 21, 2009
    Assignee: LAM Research Corporation
    Inventors: Kenji Takeshita, Odette Turmel, Felix Kozakevich, Eric Hudson
  • Publication number: 20080318433
    Abstract: Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 25, 2008
    Applicant: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, James H. Rogers, David Trussell
  • Patent number: 7430986
    Abstract: Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 7, 2008
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, James H. Rogers, David Trussell
  • Patent number: 7405521
    Abstract: A workpiece is processed with a plasma in a vacuum plasma processing chamber by exciting the plasma at several frequencies such that the excitation of the plasma by the several frequencies simultaneously causes several different phenomena to occur in the plasma. The chamber includes central top and bottom electrodes and a peripheral top and/or bottom electrode arrangement that is either powered by RF or is connected to a reference potential by a filter arrangement that passes at least one of the plasma excitation frequencies to the exclusion of other frequencies.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 29, 2008
    Assignee: Lam Research Corporation
    Inventors: Raj Dhindsa, S. M. Reza Sadjadi, Felix Kozakevich, Dave Trussell, Lumin Li, Eric Lenz, Camelia Rusu, Mukund Srinivasan, Aaron Eppler, Jim Tietz, Jeffrey Marks
  • Patent number: 7393432
    Abstract: An arrangement in a plasma processing system for selectively providing an RF grounding path between an electrode and ground. The arrangement includes an RF conduction path structure and an annular structure. The annular structure and the RF conduction path structure having two relative positions relative to one another. A first relative position of the two relative positions is characterized by the annular structure electrically coupling with the RF conduction path structure to provide a ground to the RF conduction path structure. A second relative position of the two relative positions is characterized by the annular structure being electrically uncoupled from the RF conduction path.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 1, 2008
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, Eric Lenz, Russell Martin
  • Publication number: 20080113516
    Abstract: A method in a plasma processing system for etching a feature through a given layer on a semiconductor substrate. The method includes placing the substrate in a plasma processing chamber of the plasma processing system. The method also includes flowing an etchant gas mixture into the plasma processing chamber, the etchant gas mixture being configured to etch the given layer. The method additionally includes striking a plasma from the etchant source gas. Furthermore, the method includes etching the feature at least partially through the given layer while applying a bias RF signal to the substrate, the bias RF signal having a bias RF frequency of between about 45 MHz and about 75 MHz. The bias RF signal further has a bias RF power component that is configured to cause the etch feature to be etched with an etch selectivity to a second layer of the substrate that is higher than a predefined selectivity threshold.
    Type: Application
    Filed: January 4, 2008
    Publication date: May 15, 2008
    Inventors: Kenji Takeshita, Odette Turmel, Felix Kozakevich, Eric Hudson
  • Patent number: 7276135
    Abstract: A plasma processor chamber includes a bottom electrode and a top electrode assembly having a center electrode surrounded by a grounded electrode. RF excited plasma between the electrodes induces a DC bias on them. A measure of the bottom electrode DC bias controls the capacitance of a first series resonant circuit connected between the center electrode and ground. A measure of the center electrode DC bias controls the capacitance of a second series resonant circuit connected between the bottom electrode and ground.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 2, 2007
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, Dave Trussell
  • Publication number: 20070141729
    Abstract: A number of RF power transmission paths are defined to extend from an RF power source through a matching network, through a transmit electrode, through a plasma to a number of return electrodes. A number of tuning elements are respectively disposed within the number of RF power transmission paths. Each tuning element is defined to adjust an amount of RF power to be transmitted through the RF power transmission path within which the tuning element is disposed. A plasma density within a vicinity of a particular RF power transmission path is directly proportional to the amount of RF power transmitted through the particular RF power transmission path. Therefore, adjustment of RF power transmitted through the RF power transmission paths, as afforded by the tuning element, enables control of a plasma density profile across a substrate.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 21, 2007
    Applicant: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, Lumin Li, Dave Trussell
  • Publication number: 20070076346
    Abstract: An electrostatic chuck assembly having a dielectric material and/or having a cavity with varying thickness, profile and/or shape is disclosed. The electrostatic chuck assembly includes a conductive support and an electrostatic chuck ceramic layer. A dielectric layer or insert is located between the conductive support and an electrostatic chuck ceramic layer. A cavity is located in a seating surface of the electrostatic chuck ceramic layer. An embedded pole pattern can be optionally incorporated in the electrostatic chuck assembly. Methods of manufacturing the electrostatic chuck assembly are disclosed as are methods to improve the uniformity of a flux field above a workpiece during a plasma processing process.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 5, 2007
    Inventors: Rajinder Dhindsa, Eric Lenz, Lumin Li, Felix Kozakevich
  • Patent number: 7169256
    Abstract: A plasma processor processing a workpiece includes sources having frequencies 2 MHz, 27 MHz, and 60 MHz, applied by three matching networks to an electrode in a vacuum chamber including the workpiece. Alternatively 60 MHz is applied to a second electrode by a fourth matching network. The matching networks, substantially tuned to the frequencies of the sources driving them, include series inductances so the 2 MHz inductance exceeds the 27 MHz network inductance, and the 27 MHz network inductance exceeds the inductances of the 60 MHz networks. The matching networks attenuate by at least 26 DB the frequencies of the sources that do not drive them. Shunt inductors between the 27 and 60 MHz sources decouple 2 MHz from the 27 and 60 MHz sources. A series resonant circuit (resonant to about 5 MHz) shunts the 2 MHz network and the electrode to help match the 2 MHz source to the electrode.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: January 30, 2007
    Assignee: LAM Research Corporation
    Inventors: Raj Dhindsa, Felix Kozakevich, David Douglas Trussell
  • Publication number: 20070012659
    Abstract: A method for etching a high aspect ratio feature through a mask into a layer to be etched over a substrate is provided. The substrate is placed in a process chamber, which is able to provide RF power at a first frequency, a second frequency different than the first frequency, and a third frequency different than the first and second frequency. An etchant gas is provided to the process chamber. A first etch step is provided, where the first frequency, the second frequency, and the third frequency are at power settings for the first etch step. A second etch step is provided, where the first frequency, the second frequency, and the third frequency are at a different power setting.
    Type: Application
    Filed: September 21, 2006
    Publication date: January 18, 2007
    Inventors: Camelia Rusu, Rajinder Dhindsa, Eric Hudson, Mukund Srinivasan, Lumin Li, Felix Kozakevich
  • Patent number: 7144521
    Abstract: A method for etching a high aspect ratio feature through a mask into a layer to be etched over a substrate is provided. The substrate is placed in a process chamber, which is able to provide RF power at a first frequency, a second frequency different than the first frequency, and a third frequency different than the first and second frequency. An etchant gas is provided to the process chamber. A first etch step is provided, where the first frequency, the second frequency, and the third frequency are at power settings for the first etch step. A second etch step is provided, where the first frequency, the second frequency, and the third frequency are at a different power setting.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: December 5, 2006
    Assignee: Lam Research Corporation
    Inventors: Camelia Rusu, Rajinder Dhindsa, Eric A. Hudson, Mukund Srinivasan, Lumin Li, Felix Kozakevich
  • Publication number: 20060207502
    Abstract: Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
    Type: Application
    Filed: March 18, 2005
    Publication date: September 21, 2006
    Inventors: Rajinder Dhindsa, Felix Kozakevich, James Rogers