Patents by Inventor Ferdinando Bruno

Ferdinando Bruno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8431176
    Abstract: Disclosed is a separated fraction of a reaction product of an enzymatically catalyzed polymerization of a flavonoid. The separated fraction is highly resistant to oxidation and is useful in numerous applications such as an antioxidant in food products and medical applications.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 30, 2013
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Kenneth Racicot, Nicole Favreau, Ferdinando Bruno
  • Patent number: 7718112
    Abstract: Nanometer scale structures, and methods of making the same are disclosed.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: May 18, 2010
    Assignees: University of Massachusetts, The United States of America as Represented by the Secretary of the Army
    Inventors: Christopher Drew, Ferdinando Bruno, Lynne Ann Samuelson, Jayant Kumar
  • Patent number: 7510739
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20080090103
    Abstract: Hematin, a hydroxyferriprotoporphyrin, is derivatized with one or more non-proteinaceous amphipathic groups. The derivatized hematin can serve as a mimic of horseradish peroxidase in polymerizing aromatic monomers, such as aromatic compounds. These derivatized hematins can also be used as catalysts in polymerizing aromatic monomers, and can exhibit significantly greater catalytic activity than underivatized hematin in acidic solutions. In one embodiment, polymerization is in the presence of a template, along which aromatic monomers align. An assembled hematin includes alternating layers of hematin and a polyelectrolyte, which are deposited on an electrically charged substrate. Assembled hematin can also be used to polymerize aromatic monomers.
    Type: Application
    Filed: September 26, 2007
    Publication date: April 17, 2008
    Applicants: University of Massachusetts Lowell, Government of the United States, as Represented by the Secretary of the Army
    Inventors: Sukant Tripathy, Susan Tripathy, Lynne Samuelson, Ferdinando Bruno, Sucharita Roy, Ramaswamy Nagarajan, Jayant Kumar, Bon-Cheol Ku, Soo-Hyoung Lee
  • Patent number: 7358327
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 15, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7344751
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7332297
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: February 19, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy
  • Patent number: 7309582
    Abstract: The invention relates to a novel method for enzymatic polymerization which includes (1) obtaining a reaction mixture including a monomer, a template, and an enzyme; and (2) incubating the reaction mixture for a time and under conditions sufficient for the monomer to align along the template and polymerize to form a polymer-template complex. The template can be a micelle, a borate-containing electrolyte, or lignin sulfonate. Such a complex possesses exceptional electrical and optical stability, water solubility, and processibility, and can be used in applications such as light-weight energy storage devices (e.g., rechargeable batteries), electrolytic capacitors, anti-static and anti-corrosive coatings for smart windows, and biological sensors.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: December 18, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased
  • Publication number: 20070284303
    Abstract: Nanometer scale structures, and methods of making the same are disclosed.
    Type: Application
    Filed: August 23, 2005
    Publication date: December 13, 2007
    Inventors: Christopher Drew, Ferdinando Bruno, Lynne Samuelson, Jayant Kumar
  • Publication number: 20070154430
    Abstract: Antioxidant polymers of the present invention comprise repeat units that include one or both of Structural Formulas (I) and (II): wherein: R is —H or a substituted or unsubstituted alkyl, acyl or aryl group; Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Rings A and B are each optionally substituted with one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; n is an integer equal to or greater than 2; and p is an integer equal to or greater than 0. The invention also includes methods of using and preparing these polymers.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 5, 2007
    Inventors: Ashok Cholli, Vijayendra Kumar, Javant Kumar, Virinder Parmar, Lynne Samuelson, Ferdinando Bruno
  • Publication number: 20070154608
    Abstract: Antioxidant polymers of the present invention comprise repeat units that include one or both of Structural Formulas (I) and (II): wherein: R is —H or a substituted or unsubstituted alkyl, acyl or aryl group; Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Rings A and B are each optionally substituted with one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; n is an integer equal to or greater than 2; and p is an integer equal to or greater than 0. The invention also includes methods of using and preparing these polymers.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 5, 2007
    Inventors: Ashok Cholli, Vijayendra Kumar, Javant Kumar, Virinder Parmar, Lynne Samuelson, Ferdinando Bruno
  • Publication number: 20070154720
    Abstract: Antioxidant polymers of the present invention comprise repeat units that include one or both of Structural Formulas (I) and (II): wherein: R is —H or a substituted or unsubstituted alkyl, acyl or aryl group; Ring A is substituted with at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Ring B is substituted with at least one —H and at least one tert-butyl group or substituted or unsubstituted n-alkoxycarbonyl group; Rings A and B are each optionally substituted with one or more groups selected from the group consisting of —OH, —NH, —SH, a substituted or unsubstituted alkyl or aryl group, and a substituted or unsubstituted alkoxycarbonyl group; n is an integer equal to or greater than 2; and p is an integer equal to or greater than 0. The invention also includes methods of using and preparing these polymers.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 5, 2007
    Inventors: Ashok Cholli, Vijayendra Kumar, Jayant Kumar, Virinder Parmar, Lynne Samuelson, Ferdinando Bruno
  • Patent number: 7230071
    Abstract: A method for polymerizing electronic and photonic polymers, wherein an aromatic monomer is combined with a hematin catalyst derivatized with at least one non-proteinaceous amphipathic group, and a peroxide initiator, and employing a template, wherein the aromatic monomer aligns along the template and polymerizes to form a complex comprising the polymerized monomer and the template.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: June 12, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar
  • Patent number: 7186792
    Abstract: A method for polymerizing electronic and photonic polymers, wherein an aromatic monomer is combined with a hematin catalyst derivatized with at least one non-proteinaceous amphipathic group, and a peroxide initiator, and employing a template, wherein the aromatic monomer aligns along the template and polymerizes to form a complex comprising the polymerized monomer and the template.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: March 6, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar
  • Patent number: 7186791
    Abstract: A method for polymerizing electronic and photonic polymers, wherein an aromatic monomer is combined with a hematin catalyst derivatized with at least one non-proteinaceous amphipathic group, and a peroxide initiator, and employing a template, wherein the aromatic monomer aligns along the template and polymerizes to form a complex comprising the polymerized monomer and the template.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: March 6, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar
  • Publication number: 20070021587
    Abstract: Hematin, a hydroxyferriprotoporphyrin, is derivatized with one or more non-proteinaceous amphipathic groups. The derivatized hematin can serve as a mimic of horseradish peroxidase in polymerizing aromatic monomers, such as aromatic compounds. These derivatized hematins can also be used as catalysts in polymerizing aromatic monomers, and can exhibit significantly greater catalytic activity than underivatized hematin in acidic solutions. In one embodiment, polymerization is in the presence of a template, along which aromatic monomers align. An assembled hematin includes alternating layers of hematin and a polyelectrolyte, which are deposited on an electrically charged substrate. Assembled hematin can also be used to polymerize aromatic monomers.
    Type: Application
    Filed: January 23, 2006
    Publication date: January 25, 2007
    Inventors: Sukant Tripathy, Susan Tripathy, Lynne Samuelson, Ferdinando Bruno, Sucharita Roy, Ramaswamy Nagarajan, Jayant Kumar, Bon-Cheol Ku, Soo-Hyoung Lee
  • Patent number: 7056675
    Abstract: A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixture. The monomer aligns along the template before or during the polymerization. Therefore, the polynucleotide template thereby affects the molecular weight and conformation of the conductive polymer. When the conductive polymer is complexed to a polynucleotide duplex, the conformation of the polynucleotide duplex can be modulated by changing the oxidation state of the conductive polymer.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: June 6, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Lynne A. Samuelson, Ferdinando Bruno, Susan Tripathy, legal representative, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu, Sukant K. Tripathy, deceased
  • Publication number: 20060078756
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Application
    Filed: February 9, 2004
    Publication date: April 13, 2006
    Inventors: Ferdinando Bruno, Lynne Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7022420
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: April 4, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Publication number: 20060041110
    Abstract: A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixture. The monomer aligns along the template before or during the polymerization. Therefore, the polynucleotide template thereby affects the molecular weight and conformation of the conductive polymer. When the conductive polymer is complexed to a polynucleotide duplex, the conformation of the polynucleotide duplex can be modulated by changing the oxidation state of the conductive polymer.
    Type: Application
    Filed: December 19, 2002
    Publication date: February 23, 2006
    Inventors: Lynne Samuelson, Ferdinando Bruno, Sukant Tripathy, Susan Tripathy, Ramaswamy Nagarajan, Jayant Kumar, Wei Liu