Patents by Inventor Ferenc Krausz

Ferenc Krausz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180003623
    Abstract: A method of measuring a spectral response of a biological sample (1), comprises the steps generation of probe light having a primary spectrum, irradiation of the sample (1) with the probe light, including an interaction of the probe light and the sample (1), and spectrally resolved detection of the probe light having a modified spectrum, which deviates from the primary spectrum as a result of the interaction of the probe light and the sample (1), said modified spectrum being characteristic of the spectral response of the sample (1), wherein the probe light comprises probe light pulses (2) being generated with a fs laser source device (10). Furthermore, a spectroscopic measuring apparatus is described, which is configured for measuring a spectral response of a biological sample (1).
    Type: Application
    Filed: December 18, 2015
    Publication date: January 4, 2018
    Inventors: Alexander APOLONSKIY, Ioachim PUPEZA, Ferenc KRAUSZ, Ernst FILL
  • Publication number: 20170261834
    Abstract: A method of creating difference frequency (DF) laser pulses (1) by difference frequency generation (DFG) comprises the steps of providing ultrashort laser pulses (2) having a spectral bandwidth corresponding to a Fourier limit of below 50 fs and containing first spectral components and second spectral components having larger frequencies than the first spectral components, and driving a DFG process by the ultrashort laser pulses (2) in an optically non-linear crystal (10), wherein the DF laser pulses (1) are generated in the crystal (10) by difference frequencies between the first and second spectral components, resp.
    Type: Application
    Filed: July 13, 2015
    Publication date: September 14, 2017
    Inventors: Alexander APOLONSKIY, Ernst FILL, loachim PUPEZA, Ferenc KRAUSZ
  • Patent number: 9625728
    Abstract: A method of spatially splitting a primary radiation beam (1) with a first radiation component (2) including an optical wavelength and a second radiation component (3) having a wavelength shorter than the first radiation component wavelength, said second radiation component (3) having a second or higher harmonic wavelength relative to the optical wavelength, comprises directing the primary radiation beam (1) onto a deflection mirror (10) having a reflective mirror surface (12) and carrying a refractive plate element (20), reflecting the first radiation component (2) at the reflective mirror surface (12) and reflecting the second radiation component (3) at an exposed plate surface (22) of the refractive plate element (20), wherein the reflected radiation components (4, 5) travel along different beam paths.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: April 18, 2017
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Ioachim Pupeza, Ferenc Krausz
  • Patent number: 9590382
    Abstract: An enhancement resonator (20) being configured for generating intra-resonator laser light (1) by coherent superposition of input laser light, comprises at least three resonator mirrors (21, 22, 23, 24) spanning a ring resonator path in one common resonator plane, said resonator path being free of a laser light amplifying medium, wherein the at least three resonator mirrors (21, 22, 23, 24) include at least two toroidal mirrors and/or at least one cylindrical mirror. Furthermore, a laser device (100) comprising the enhancement resonator (20) and a method of generating intra-resonator laser light (1) are described.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: March 7, 2017
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Ioachim Pupeza, Henning Carstens, Simon Holzberger, Ernst Fill, Ferenc Krausz
  • Patent number: 9450367
    Abstract: A laser pulse amplifier device (100) includes an amplifying cavity (10) comprising an amplifying laser gain medium (11) and multiple cavity mirrors (12.1 to 12.7) spanning a cavity light path (13), wherein the amplifying cavity (10) is configured for an amplification of laser pulses (1) circulating along the cavity light path, and a multi-pass amplifier (20) being optically coupled with the amplifying cavity (10) and comprising multiple deflection mirrors (22) spanning a multipass light path (23), wherein the multi-pass amplifier (20) is configured for a post-amplification of laser pulses (2) coupled out of the amplifying cavity (10), wherein the amplifying cavity (10) and the multi-pass amplifier (20) are arranged such that the laser gain medium (11) of the amplifying cavity (10) is included as an active medium in the multi-pass light path (23) of the multi-pass amplifier (20). Furthermore, a method of amplifying laser pulses is described.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 20, 2016
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Moritz Ueffing, Thomas Metzger, Ferenc Krausz
  • Patent number: 9318867
    Abstract: A laser device (100), configured for generating laser pulses, has a laser resonator (10) with a gain disk medium (11) and a Kerr medium (12). The laser resonator (10) includes a first mode shaping section (13) which is adapted for shaping a circulating electric field coupled into the gain disk medium (11), and a second mode shaping section (14), which is adapted for shaping the circulating electric field coupled into the Kerr medium (12) independently of the electric field shaping in the first mode shaping section (13). Furthermore, a method of generating laser pulses (1) using a laser resonator (10) with a gain disk medium (11) and a Kerr medium (12) is described.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 19, 2016
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Oleg Pronin, Ferenc Krausz, Alexander Apolonskiy, Jonathan Brons
  • Publication number: 20150340833
    Abstract: An enhancement resonator (20) being configured for generating intra-resonator laser light (1) by coherent superposition of input laser light, comprises at least three resonator mirrors (21, 22, 23, 24) spanning a ring resonator path in one common resonator plane, said resonator path being free of a laser light amplifying medium, wherein the at least three resonator mirrors (21, 22, 23, 24) include at least two toroidal mirrors and/or at least one cylindrical mirror. Furthermore, a laser device (100) comprising the enhancement resonator (20) and a method of generating intra-resonator laser light (1) are described.
    Type: Application
    Filed: January 16, 2013
    Publication date: November 26, 2015
    Inventors: Ioachim PUPEZA, Henning CARSTENS, Simon HOLZBERGER, Ernst FILL, Ferenc KRAUSZ
  • Publication number: 20150249315
    Abstract: A laser pulse amplifier device (100) includes an amplifying cavity (10) comprising an amplifying laser gain medium (11) and multiple cavity mirrors (12.1 to 12.7) spanning a cavity light path (13), wherein the amplifying cavity (10) is configured for an amplification of laser pulses (1) circulating along the cavity light path, and a multi-pass amplifier (20) being optically coupled with the amplifying cavity (10) and comprising multiple deflection mirrors (22) spanning a multipass light path (23), wherein the multi-pass amplifier (20) is configured for a post-amplification of laser pulses (2) coupled out of the amplifying cavity (10), wherein the amplifying cavity (10) and the multi-pass amplifier (20) are arranged such that the laser gain medium (11) of the amplifying cavity (10) is included as an active medium in the multi-pass light path (23) of the multi-pass amplifier (20). Furthermore, a method of amplifying laser pulses is described.
    Type: Application
    Filed: July 13, 2012
    Publication date: September 3, 2015
    Applicants: Ludwig-Maximilians-Universitaet Muenchen, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Moritz Ueffing, Thomas Metzger, Ferenc Krausz
  • Patent number: 9057930
    Abstract: An optical parametric amplification device and method. The method includes providing a pump pulse having a pump pulse duration, providing a chirped seed pulse having a seed pulse duration, sequentially passing the pump and seed pulses through amplification stages, wherein the pump and seed pulses are coupled into the amplification stages with varying mutual temporal overlap and the seed pulse is amplified at each amplification stage, an amplified signal pulse is provided by the seed pulse after amplification in a last amplification stage, the seed pulse duration is longer than the pump pulse duration, the mutual temporal overlap of the pump and seed pulses is varied with different temporal ranges of the seed pulse amplified at each amplification stage. Compared with the seed pulse, the signal pulse has an increased energy in the spectral regions determined by the temporal overlap of the seed pulse with the pump pulse.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 16, 2015
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Yunpei Deng, Ferenc Krausz
  • Publication number: 20150131685
    Abstract: An opto-electronic device (100) for processing optical and electric pulses includes a photoconductor device (10) with a sensor section (11) which is made of a band gap material and which has electrical sensor contacts (12, 13), and a signal processing device (20) which is connected with the sensor contacts (12, 13), wherein the photoconductor device (10) is adapted to create a photocurrent between the sensor contacts (12, 13) in response to an irradiation with ultra-short driving laser pulses (1) having a photon energy smaller than the energy band gap of the band gap material, having a non-zero electric field component (3) oriented parallel with a line (4) between the electrical sensor contacts (12, 13), and causing a charge carrier displacement in the band gap material, and wherein the signal processing device (20) is configured for an output of an electric signal being characteristic for at least one of carrier-envelope phase (CE phase), intensity, temporal properties, spectral intensity and spectral phase
    Type: Application
    Filed: April 20, 2012
    Publication date: May 14, 2015
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Agustin Schiffrin, Ralph Ernstorfer, Ferenc Krausz, Tim Paasch-Colberg
  • Patent number: 9030733
    Abstract: A method of spatially relaying a first radiation component (1) having a first wavelength and a second radiation component (2) having a second wavelength different from the first radiation component (1), using an optical relaying device (10) which comprises a transparent plate (11) having anti-reflection coatings (12, 13) on both side surfaces thereof, comprises transmitting the first radiation component (1) across the optical relaying device (10) with predetermined incident (a) and emergent angles (?), resp., wherein said anti-reflection coatings (12, 13) being effective for the first radiation component (1) at the incident and emergent angles (?, ?), resp., and reflecting the second radiation component (2) at the optical relaying device (10) with a predetermined reflection angle (a) being equal to at least one of said incident and emergent angles (?, ?), wherein the first and second radiation components (1, 2) are split from each other toward different directions or combined into a common beam path.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: May 12, 2015
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Oleg Pronin, Alexander Apolonskiy, Ferenc Krausz, Vladimir Pervak
  • Patent number: 8976834
    Abstract: A method of generating intra-resonator laser light (1) comprises the steps of coupling input laser light (2), e. g.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: March 10, 2015
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Jan Kaster, Ioachim Pupeza, Ernst Fill, Ferenc Krausz
  • Publication number: 20140293405
    Abstract: An optical parametric amplification device and method. The method includes providing a pump pulse having a pump pulse duration, providing a chirped seed pulse having a seed pulse duration, sequentially passing the pump and seed pulses through amplification stages, wherein the pump and seed pulses are coupled into the amplification stages with varying mutual temporal overlap and the seed pulse is amplified at each amplification stage, an amplified signal pulse is provided by the seed pulse after amplification in a last ampli-fication stage, the seed pulse duration is longer than the pump pulse duration, the mutual temporal overlap of the pump and seed pulses is varied with different temporal ranges of the seed pulse amplified at each amplification stage. Compared with the seed pulse, the signal pulse has an increased energy in the spectral regions determined by the temporal overlap of the seed pulse with the pump.
    Type: Application
    Filed: August 1, 2012
    Publication date: October 2, 2014
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Yunpei Deng, Ferenc Krausz
  • Publication number: 20140286364
    Abstract: A laser device (100), configured for generating laser pulses, has a laser resonator (10) with a gain disk medium (11) and a Kerr medium (12). The laser resonator (10) includes a first mode shaping section (13) which is adapted for shaping a circulating electric field coupled into the gain disk medium (11), and a second mode shaping section (14), which is adapted for shaping the circulating electric field coupled into the Kerr medium (12) independently of the electric field shaping in the first mode shaping section (13). Furthermore, a method of generating laser pulses (1) using a laser resonator (10) with a gain disk medium (11) and a Kerr medium (12) is described.
    Type: Application
    Filed: October 7, 2011
    Publication date: September 25, 2014
    Applicants: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V., Ludwig-Maximilians-Universitaet Muenchen
    Inventors: Oleg Pronin, Ferenc Krausz, Alexander Apolonskiy, Jonathan Brons
  • Publication number: 20140036352
    Abstract: A method of spatially relaying a first radiation component (1) having a first wavelength and a second radiation component (2) having a second wavelength different from the first radiation component (1), using an optical relaying device (10) which comprises a transparent plate (11) having anti-reflection coatings (12, 13) on both side surfaces thereof, comprises transmitting the first radiation component (1) across the optical relaying device (10) with predetermined incident (a) and emergent angles (?), resp., wherein said anti-reflection coatings (12, 13) being effective for the first radiation component (1) at the incident and emergent angles (?, ?), resp., and reflecting the second radiation component (2) at the optical relaying device (10) with a predetermined reflection angle (a) being equal to at least one of said incident and emergent angles (?, ?), wherein the first and second radiation components (1, 2) are split from each other toward different directions or combined into a common beam path.
    Type: Application
    Filed: April 5, 2012
    Publication date: February 6, 2014
    Applicants: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN, E.V., LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
    Inventors: Oleg Pronin, Alexander Apolonskiy, Ferenc Krausz, Vladimir Pervak
  • Publication number: 20140029107
    Abstract: A method of spatially splitting a primary radiation beam (1) with a first radiation component (2) including an optical wavelength and a second radiation component (3) having a wavelength shorter than the first radiation component wavelength, said second radiation component (3) having a second or higher harmonic wavelength relative to the optical wavelength, comprises directing the primary radiation beam (1) onto a deflection mirror (10) having a reflective mirror surface (12) and carrying a refractive plate element (20), reflecting the first radiation component (2) at the reflective mirror surface (12) and reflecting the second radiation component (3) at an exposed plate surface (22) of the refractive plate element (20), wherein the reflected radiation components (4, 5) travel along different beam paths.
    Type: Application
    Filed: January 25, 2012
    Publication date: January 30, 2014
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Ioachim Pupeza, Ferenc Krausz
  • Patent number: 8582610
    Abstract: A radiation source that provides high order harmonic radiation (HHG radiation) in an UV or XUV wavelength range comprising a resonant cavity that guides laser light pulses that includes at least two cavity mirrors, a first non-linear medium that provides the HHG radiation by harmonic generation based on an interaction of the laser light pulses with the first non-linear medium, wherein the first non-linear medium is arranged in the resonant cavity in an environment of reduced pressure, and a second non-linear medium arranged in the resonant cavity and adapted for at least one of amplifying the laser light pulses and phase locking longitudinal modes of the laser light pulses in the resonant cavity.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 12, 2013
    Assignees: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V., Ludwig-Maximillians-Universitat Muenchen
    Inventors: Ferenc Krausz, Jens Rauschenberger, Alexander Apolonskiy
  • Publication number: 20130215925
    Abstract: A method of generating intra-resonator laser light (1) comprises the steps of coupling input laser light (2), e.g.
    Type: Application
    Filed: September 6, 2010
    Publication date: August 22, 2013
    Applicants: Ludwig-Maximilians-Universitaet Muenchen, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Jan Kaster, Ioachim Pupeza, Ernst Fill, Ferenc Krausz
  • Publication number: 20120275478
    Abstract: A method of generating pulsed laser light (1) comprises the steps of providing laser light pulses (2, 3) having a predetermined pulse repetition rate (frep) with a laser source device (10), coupling the laser light pulses into an enhancement cavity (21) with a plurality of cavity mirrors (21.1, 21.2, . . . ) and a predetermined cavity length (L), and coherent addition of the laser light pulses (2) in the enhancement cavity so that at least one cavity pulse (1.1, 1.2, . . . ) is formed, wherein the at least one cavity pulse (1.1, 1.2, . . . ) circulating in the enhancement cavity (21) irradiates all of the cavity mirrors (21.1, 21.2, . . . ) with an angle (?) of incidence of more than 45°. Furthermore, a laser device (100) being configured for conducting the method is described.
    Type: Application
    Filed: November 20, 2009
    Publication date: November 1, 2012
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Ferenc Krausz, Ernst Fill, Jens Rauschenberger, Ioachim Pupeza
  • Patent number: 7903705
    Abstract: A short pulse laser arrangement with, preferably, passive mode-locking, comprising a resonator containing a laser crystal and several mirrors, one of which forms a pump beam coupling-in mirror and one of which forms a laser beam out-coupling mirror, and a multiple reflexion telescope enlarging the resonator length, the resonator in operation having a positive averaged dispersion over a wavelength range concerned; the adjustment of the positive averaged dispersion of the resonator is effected by means of the mirrors of the resonator, at least a few of which are designed as dispersive mirrors.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: March 8, 2011
    Assignee: Femtolasers Produktions GmbH
    Inventors: Alexander Apolonski, Ferenc Krausz, Andreas Stingl, Alexander Fürbach