Patents by Inventor Fermin A. Sandoval Diaz

Fermin A. Sandoval Diaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6904788
    Abstract: A sensor component that may be used in conjunction with a filter module may include a plurality of sensor packages. The latter, in turn, may incorporate one or more micro-electromechanical systems (MEMS) sensors to measure various characteristics of fluid flow and filtration. A single sensor component may be adapted to measure the pressure, temperature, flow rate, differential pressure, conductivity, viscosity, pH level, etc. of the fluid at an upstream and a downstream location. Sensor measurements may be obtained continuously in order to monitor and indicate fluid conditions, including the use of a warning mechanism to indicate an out-of-range condition when the measurements fall outside of pre-set limits. Depending on the application and the fluid being filtered, data, including measurement data, may be transmitted through electrical connections or wirelessly. In wireless configurations, a sleep-mode may be included to maximize the life of local power supplies.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: June 14, 2005
    Assignee: PTI Technologies, Inc.
    Inventors: Michael Sandford, Fermin A. Sandoval Diaz
  • Patent number: 6901812
    Abstract: An ultrasonic sensor having a pair of ultrasound transducers adapted to be inserted in and being able to perform at a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid. The arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with that of the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths. In addition, the ultrasonic sensor may also be used to measure the temperature, viscosity, and cavitation effects of a fluid.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 7, 2005
    Assignee: PTI Technologies, Inc.
    Inventors: Daniel K. Moscaritolo, Francis H. Kantor, Fermin A. Sandoval Diaz
  • Publication number: 20050092102
    Abstract: An ultrasonic sensor, including methods of using and installing same, the sensor having a pair of ultrasound transducers adapted to be inserted in, and being able to perform at, a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid, the arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a curved reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 5, 2005
    Inventors: Daniel Moscaritolo, Francis Kantor, Fermin Sandoval Diaz, David Tigwell
  • Publication number: 20050087025
    Abstract: An ultrasonic sensor, including methods of using and installing same, the sensor having a pair of ultrasound transducers adapted to be inserted in, and being able to perform at, a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid, the arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The sensor may utilize a reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths. In addition, the ultrasonic sensor may be used to measure the temperature, viscosity, and cavitation effects of a fluid.
    Type: Application
    Filed: November 3, 2004
    Publication date: April 28, 2005
    Inventors: Daniel Moscaritolo, Francis Kantor, Fermin Sandoval Diaz
  • Patent number: 6854339
    Abstract: An ultrasonic sensor having a pair of ultrasound transducers adapted to be inserted in and being able to perform at a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid. The arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with that of the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a curved reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: February 15, 2005
    Assignees: PTI Technologies, Inc., D. C. Tigwell & Associates
    Inventors: Daniel Moscaritolo, Francis H. Kantor, Fermin A. Sandoval Diaz, David Tigwell
  • Publication number: 20050016260
    Abstract: A sensor component that may be used in conjunction with a filter module may include a plurality of sensor packages. The latter, in turn, may incorporate one or more micro-electromechanical systems (MEMS) sensors to measure various characteristics of fluid flow and filtration. A single sensor component may be adapted to measure the pressure, temperature, flow rate, differential pressure, conductivity, viscosity, pH level, etc. of the fluid at an upstream and a downstream location. Sensor measurements may be obtained continuously in order to monitor and indicate fluid conditions, including the use of a warning mechanism to indicate an out-of-range condition when the measurements fall outside of pre-set limits. Depending on the application and the fluid being filtered, data, including measurement data, may be transmitted through electrical connections or wirelessly. In wireless configurations, a sleep-mode may be included to maximize the life of local power supplies.
    Type: Application
    Filed: July 30, 2004
    Publication date: January 27, 2005
    Inventors: Michael Sandford, Fermin Sandoval Diaz
  • Patent number: 6823718
    Abstract: A sensor component that may be used in conjunction with a filter module may include a plurality of sensor packages. The latter, in turn, may incorporate one or more micro-electromechanical systems (MEMS) sensors to measure various characteristics of fluid flow and filtration. A single sensor component may be adapted to measure the pressure, temperature, flow rate, differential pressure, conductivity, viscosity, pH level, etc. of the fluid at an upstream and a downstream location. Sensor measurements may be obtained continuously in order to monitor and indicate fluid conditions, including the use of a warning mechanism to indicate an out-of-range condition when the measurements fall outside of pre-set limits. Depending on the application and the fluid being filtered, data, including measurement data, may be transmitted through electrical connections or wirelessly. In wireless configurations, a sleep-mode may be included to maximize the life of local power supplies.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: November 30, 2004
    Assignee: PTI Technologies, Inc.
    Inventors: Michael Sandford, Fermin A. Sandoval Diaz
  • Publication number: 20040129088
    Abstract: An ultrasonic sensor has a pair of ultrasound transducers and is adapted to be inserted in and able to perform at a single site of introduction into a duct, a manifold, or a pipe. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid. The arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with that of the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a curved reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap or housing to provide forward and reverse ultrasonic W-shaped paths.
    Type: Application
    Filed: December 17, 2003
    Publication date: July 8, 2004
    Applicant: D.C. TIGWELL & ASSOCIATES
    Inventors: Daniel Moscaritolo, Francis H. Kantor, Fermin A. Sandoval Diaz, David Tigwell
  • Publication number: 20040123674
    Abstract: An ultrasonic sensor having a pair of ultrasound transducers adapted to be inserted in and being able to perform at a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid. The arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with that of the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths. In addition, the ultrasonic sensor may also be used to measure the temperature, viscosity, and cavitation effects of a fluid.
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Applicant: PTI Technologies, Inc.
    Inventors: Daniel K. Moscaritolo, Francis H. Kantor, Fermin A. Sandoval Diaz
  • Publication number: 20040123673
    Abstract: An ultrasonic sensor having a pair of ultrasound transducers adapted to be inserted in and being able to perform at a single site of introduction into a duct. The ultrasonic sensor measures a forward ultrasonic path transit time and a second reverse ultrasonic path transit time of ultrasound signals propagating in a fluid. The arrangement being such that a comparison of the signal associated with ultrasound travel in one direction with that of the signal associated with ultrasound travel in the opposite direction enables the flow rate of the fluid in the duct to be determined. The ultrasonic sensor may utilize a curved reflecting surface on the duct and a reflective surface of an ultrasonic sensor end cap to provide forward and reverse ultrasonic W-shaped paths.
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Inventors: Daniel Moscaritolo, Francis H. Kantor, Fermin A. Sandoval Diaz, David Tigwell
  • Publication number: 20040079148
    Abstract: A sensor component that may be used in conjunction with a filter module may include a plurality of sensor packages. The latter, in turn, may incorporate one or more micro-electromechanical systems (MEMS) sensors to measure various characteristics of fluid flow and filtration. A single sensor component may be adapted to measure the pressure, temperature, flow rate, differential pressure, conductivity, viscosity, pH level, etc. of the fluid at an upstream and a downstream location. Sensor measurements may be obtained continuously in order to monitor and indicate fluid conditions, including the use of a warning mechanism to indicate an out-of-range condition when the measurements fall outside of pre-set limits. Depending on the application and the fluid being filtered, data, including measurement data, may be transmitted through electrical connections or wirelessly. In wireless configurations, a sleep-mode may be included to maximize the life of local power supplies.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 29, 2004
    Applicant: PTI TECHNOLOGIES, INC.
    Inventors: Michael Sandford, Fermin A. Sandoval Diaz