Patents by Inventor Fernand A. Thomassy

Fernand A. Thomassy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8870711
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 28, 2014
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Scott T. McBroom
  • Patent number: 8852050
    Abstract: Components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) having a control system adapted to facilitate a change in the ratio of a CVT are provided. In one embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: October 7, 2014
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventor: Fernand A Thomassy
  • Publication number: 20140179479
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: FALLBROOK INTELLECTUAL PROPERTY COMPANY LLC
    Inventors: Jon M. Nichols, Gregory G. Stevenson, Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Jeremy Carter, John W. Sherrill, Brian B. Sweet
  • Patent number: 8663050
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: March 4, 2014
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Gregory G Stevenson, Brad P Pohl, Fernand A Thomassy, Charles B Lohr, Jeremy Carter, John W Sherrill, Brian B Sweet
  • Publication number: 20130324344
    Abstract: Inventions are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one aspect, a control system is adapted to facilitate a change in the ratio of a CVT. A control system includes a control reference nut coupled to a feedback cam and operably coupled to a skew cam. In some cases, the skew cam is configured to interact with carrier plates of a CVT. Various inventive feedback cams and skew cams can be used to facilitate shifting the ratio of a CVT. In some transmissions described, the planet subassemblies include legs configured to cooperate with the carrier plates. In some cases, a neutralizer assembly is operably coupled to the carrier plates. A shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are described.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: Fallbrook Intellectual Property Comapny LLC
    Inventors: Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr
  • Publication number: 20130310214
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Scott T. McBroom
  • Publication number: 20130288844
    Abstract: Components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) having a control system adapted to facilitate a change in the ratio of a CVT are described. In one embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 31, 2013
    Inventor: Fernand A Thomassy
  • Patent number: 8506452
    Abstract: Inventions are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one aspect, a control system is adapted to facilitate a change in the ratio of a CVT. A control system includes a control reference nut coupled to a feedback cam and operably coupled to a skew cam. In some cases, the skew cam is configured to interact with carrier plates of a CVT. Various inventive feedback cams and skew cams can be used to facilitate shifting the ratio of a CVT. In some transmissions described, the planet subassemblies include legs configured to cooperate with the carrier plates. In some cases, a neutralizer assembly is operably coupled to the carrier plates. A shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are described.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 13, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P Pohl, Fernand A Thomassy, Charles Lohr
  • Patent number: 8496554
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 30, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P Pohl, Fernand A. Thomassy, Charles B Lohr, Scott T McBroom
  • Patent number: 8469856
    Abstract: Components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT) having a control system adapted to facilitate a change in the ratio of a CVT. In one embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 25, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventor: Fernand A Thomassy
  • Patent number: 8360917
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: January 29, 2013
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M. Nichols, Gregory G. Stevenson, Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Jeremy Carter, John W. Sherrill, Brian B. Sweet
  • Patent number: 8317650
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: November 27, 2012
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Brad P Pohl, Daniel J Dawe, Oronde J Armstrong, Charles B Lohr, Loren T McDaniel, Matthew P Simister, Fernand A Thomassy, Ghayyurul I Usmani, Paul M Elhardt, Terry L Stewart, Peter D Poxton, Elton L Eidson
  • Publication number: 20120238386
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 20, 2012
    Applicant: Fallbrook Technologies Inc.
    Inventors: Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Scott T. McBroom
  • Patent number: 8262536
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: September 11, 2012
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Brad P Pohl, Daniel J Dawe, Oronde J Armstrong, Charles B Lohr, Loren T McDaniel, Matthew P Simister, Fernand A Thomassy, Ghayyurul I Usmani, Paul M Elhardt, Terry L Stewart, Peter D Poxton, Elton L Eidson
  • Patent number: 8171636
    Abstract: A continuously variable transmission has a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. The profile of the shift cam can vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. The profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. A roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 8, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8167759
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: May 1, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Brad P Pohl, Fernand A Thomassy, Charles B Lohr, Scott T McBroom
  • Patent number: 8133149
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 13, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8123653
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: February 28, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8066613
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 29, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 7976426
    Abstract: A continuously variable transmission (CVT) having a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. In one embodiment, the profile of the shift cam vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. In some embodiments, the profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. In other embodiments, a roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 12, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr