Patents by Inventor Fernando Casas

Fernando Casas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210213186
    Abstract: An implantable blood pump includes a tube including an inner wall, and wherein during operation of the blood pump, the impeller rotates within the tube and a distance between the inner wall of the tube and the thrust bearing decreases as a speed of the impeller increases.
    Type: Application
    Filed: November 19, 2020
    Publication date: July 15, 2021
    Inventors: Christopher M. MICHELENA, David A. SCHAFIR, Fernando CASAS, Mustafa Ertan TASKIN
  • Publication number: 20210113751
    Abstract: An implantable blood pump includes a housing defining an inlet and an outlet and a flow path therethrough. A rotor is disposed within the housing. A stator is disposed within the housing, the stator being configured to rotate the rotor when a current is applied to the stator. A volute is disposed distal to the rotor proximate the outlet, the volute including a tongue composed of a piezoelectric material.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Fernando CASAS, Mustafa Ertan TASKIN, David A. SCHAFIR
  • Publication number: 20210045639
    Abstract: A blood pump including a housing having an inlet element, the inlet element including a distal portion coupled to the housing and a proximal portion sized to be received within at least a portion of a heart of a patient and a rotor configured to rotate within the housing and impel blood from the heart. At least one pressure sensor is coupled to the proximal portion of the inlet element.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventor: Fernando Casas
  • Patent number: 10881768
    Abstract: A driveline for an implantable blood pump including a percutaneous outer tube configured to connect with the blood pump when the blood pump is implanted within a body of a patient and an external controller outside of the body of the patient and at least one ultra-violet light emitter coupled to the outer tube.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 5, 2021
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Publication number: 20200405931
    Abstract: A method of controlling a blood pump having a predefined hydraulic performance including at least from the group consisting of estimating and measuring an instantaneous flow rate during operation of the blood pump at a predetermined rotational speed of an impeller of the blood pump, the instantaneous flow rate including a plurality of flow rate data points. The plurality of flow rate data points define a trajectory around at least one from the group consisting of an operational point of a predefined pressure-flow curve associated with the predetermined rotational speed of the impeller of the blood pump and a target operational point of a target pressure-flow curve different than the predefined pressure-flow curve. The predetermined rotational speed of the impeller is adjusted until the plurality of flow rate data points define a predetermined trajectory around at least one of the operational point and the target operational point.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Inventors: Carlos Reyes, Fernando Casas
  • Patent number: 10856745
    Abstract: A blood pump including a housing having an inlet element, the inlet element including a distal portion coupled to the housing and a proximal portion sized to be received within at least a portion of a heart of a patient and a rotor configured to rotate within the housing and impel blood from the heart. At least one pressure sensor is coupled to the proximal portion of the inlet element.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: December 8, 2020
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Publication number: 20200345912
    Abstract: The present invention relates to kits and methods for calibrating a pump through performance of a thermal knockdown process including demagnetization of an impeller of the pump where the impeller is separate from the pump. By heat treating the impeller, a property of magnetic interaction of the pump is reduced in a repeatable manner. A kit includes a pump with impeller, a controller and an oven. The method generally involves an iterative process of testing the pump for a property related to magnetic interaction of the elements of the pump, removing the impeller from the pump, heating the impeller under controlled conditions, then placing the impeller back into the pump to repeat the test performed initially.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 5, 2020
    Inventors: Justin Wolman, Carlos Reyes, Fernando Casas
  • Patent number: 10806839
    Abstract: A ventricular assist system including an implantable rotary pump, a pump drive circuit for supplying power to the pump, and a signal processing circuit receiving one or more electrophysiological signals and one or more physiological signals of the subject. The signal processing circuit is operable to receive inputs from the one or more electrophysiological sensors and the physiological sensor, and determine the presence or absence of a non-normal sinus cardiac rhythm condition based on the input from the electrophysiological sensors. In the presence of a non-normal sinus rhythm, the circuit operates the pump in a modified mode of operation. In the absence of a non-normal sinus rhythm, the circuit operates the pump in a normal mode of operation. In either case, the circuit controls the power to the pump and/or speed of the pump based on the input from the physiological sensor and the mode of operation.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 20, 2020
    Assignee: HeartWare, Inc.
    Inventors: Barry M. Yomtov, Fernando Casas
  • Patent number: 10806840
    Abstract: A method of controlling a blood pump having a predefined hydraulic performance including at least from the group consisting of estimating and measuring an instantaneous flow rate during operation of the blood pump at a predetermined rotational speed of an impeller of the blood pump, the instantaneous flow rate including a plurality of flow rate data points. The plurality of flow rate data points define a trajectory around at least one from the group consisting of an operational point of a predefined pressure-flow curve associated with the predetermined rotational speed of the impeller of the blood pump and a target operational point of a target pressure-flow curve different than the predefined pressure-flow curve. The predetermined rotational speed of the impeller is adjusted until the plurality of flow rate data points define a predetermined trajectory around at least one of the operational point and the target operational point.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: October 20, 2020
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas
  • Patent number: 10786612
    Abstract: A driveline for an implantable blood pump including a percutaneous connector including an outer tube, the outer tube defining an exterior surface and having a proximal portion and a distal portion opposite the proximal portion, the proximal portion being couplable to the implantable blood pump disposed within a body of a patient and the distal portion being couplable to a controller outside of the body of the patient and at least one electronic instrument coupled to the outer tube and fluidically sealed from the exterior surface.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 29, 2020
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 10744247
    Abstract: The present invention relates to kits and methods for calibrating a pump through performance of a thermal knockdown process including demagnetization of an impeller of the pump where the impeller is separate from the pump. By heat treating the impeller, a property of magnetic interaction of the pump is reduced in a repeatable manner. A kit includes a pump with impeller, a controller and an oven. The method generally involves an iterative process of testing the pump for a property related to magnetic interaction of the elements of the pump, removing the impeller from the pump, heating the impeller under controlled conditions, then placing the impeller back into the pump to repeat the test performed initially.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 18, 2020
    Assignee: HeartWare, Inc.
    Inventors: Justin Wolman, Carlos Reyes, Fernando Casas
  • Patent number: 10744246
    Abstract: An implantable blood pump including a housing having an inlet cannula, a rotor disposed within the housing, the rotor in fluid communication with the inlet cannula, a stator disposed within the housing, the stator configured to rotate the rotor when a current is applied to the stator, and at least one ultraviolet light emitter disposed within the housing.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 18, 2020
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 10737006
    Abstract: A flow rate of blood through an implantable blood pump is determined based on a parameter related to the flow, such as a parameter related to thrust on the rotor of the pump. An amount of current supplied to the pump is used to determine each of a first flow rate value and second flow rate values. Each of the first and second flow rate values, in combination with the parameter related to thrust on the rotor of the pump, are used to calculate a flow rate of blood through the pump.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 11, 2020
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Justin Wolman, Carlos Reyes, Antonio Luiz Silva Ferreira
  • Patent number: 10660997
    Abstract: A blood pump has an inner housing and an actuator at least partially surrounded by the inner housing which is configured to drive a flow of blood within the body. An electronic component associated with a surface of the housing includes one or more thin film active electronic devices which implement one or more transducers configured to generate a signal based on movement associated with operation of the blood pump. An electromagnetic stator at least partially surrounds the inner housing and is configured to be magnetically coupled with the actuator in an energized state of the electromagnetic stator, wherein the electromagnetic stator may overlie at least a portion of the electronic component.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 26, 2020
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Publication number: 20200101209
    Abstract: A method of determining a mean arterial pressure index of a patient having an implantable blood pump including determining a pump speed and a pump flow value; analyzing the pump speed and the pump flow value to a pump loss constant value; determining a graft hydraulic resistance value during a systolic phase of a cardiac cycle based on the analysis of the pump speed and the pump flow value to the pump loss constant value; determining a mean arterial pressure index during a diastolic phase of the cardiac cycle based on the determined graft hydraulic resistance value; comparing the mean arterial pressure index of the patient to a mean arterial pressure index range; and generating an alert when the mean arterial pressure index varies with respect to a mean arterial pressure index range.
    Type: Application
    Filed: September 17, 2019
    Publication date: April 2, 2020
    Inventors: Carlos REYES, Fernando CASAS
  • Patent number: 10589011
    Abstract: A ventricular assist device includes a pump configured to pump blood of a patient. A motor is configured to operate the pump. First, second, and third conductors are coupled to the motor and are configured to supply electric current from a power supply to the motor in first, second, and third phases, respectively. A controller is configured to operate the motor using a Field Oriented Control (FOC) method, and if one from the group consisting of first, second and third conductors becomes unable to supply electric current to the motor, the controller continues to operate the motor using the FOC method using the phases of the two conductors that are able to supply electric current to the motor.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: March 17, 2020
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Carlos Reyes, Justin Wolman
  • Patent number: 10543302
    Abstract: A method of operating an implantable blood pump implanted within a heart of a patient comprising measuring at least one from the group consisting of a current drawn by the implantable blood pump and a blood flow from the implantable blood pump during operation; correlating the at least one from the group consisting the current and the blood flow to a systolic arterial pressure and a diastolic arterial pressure; and adjusting a speed of an impeller of the implantable blood pump relative to a predetermined speed to correspond to an increase the at least one from the group consisting the current during a systolic phase of a cardiac cycle and a decrease in the at least one from the group consisting the current and the blood flow during a diastolic phase of the cardiac cycle.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 28, 2020
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas
  • Publication number: 20190358383
    Abstract: The present disclosure provides for methods and systems for determining heart rate of a patient. Based on motor current signals of a ventricular assist device (VAD), each of first, second and third events in the measured current signal may be detected, the first event being indicative of a rise or fall in the current signal, the second event being indicative of a rise or fall in the current signal in the opposite direction as the first event, and the third event being indicative of a rise or fall in the current signal in the same direction as the first event. A timer counter may be initiated upon detection of the first event, and an elapsed time may be measured upon detection of the third event. Heart rate may be determined based on the elapsed time of the timer counter.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Carlos REYES, Fernando CASAS, Justin WOLMAN
  • Publication number: 20190343999
    Abstract: A method of controlling an implantable blood pump including a housing having a proximal portion including an inlet, a distal portion including an outlet, and an impeller therein, the method including detecting when a pressure in the housing exceeds a pressure threshold and executing a first vector control command to displace the impeller axially in a distal direction from a primary position to a secondary position different than the primary position in response to the pressure exceeding the pressure threshold.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 14, 2019
    Inventors: Justin WOLMAN, Fernando CASAS, Carlos REYES, Thomas R. JOHNSON
  • Publication number: 20190307938
    Abstract: A method of responding to an adverse event associated with an implantable blood pump including detecting the adverse event, reducing a pump speed of the blood pump relative to a set pump speed in response to the detected adverse event, and determining whether at least one of a group consisting of the adverse event and a second adverse event is present following the reducing of the pump speed of the blood pump. If the at least one of the group consisting of the adverse event and a second adverse event is not present, the method includes increasing the pump speed to the set pump speed and if the at least one of the group consisting of the adverse event and a second adverse event is present while increasing the pump speed to the set pump speed, the method includes reducing the pump speed to a maximum safe operating speed.
    Type: Application
    Filed: March 20, 2019
    Publication date: October 10, 2019
    Inventors: Carlos REYES, Katherine CHORPENNING, Antonio Luiz Silva FERREIRA, Neethu Lekshmi VASUDEVAN JALAJA, Justin WOLMAN, Fernando CASAS