Patents by Inventor Fernando Garzon

Fernando Garzon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11283020
    Abstract: An resistive switch having a first platinum layer, an electrolyte layer that is formed by extrusion based additive manufacturing, a silver layer, and a second platinum layer, and methods of manufacturing and using the resistive switch.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: March 22, 2022
    Assignee: UNM RAINFOREST INNOVATIONS
    Inventors: Lok-kun Tsui, John Bryan Plumley, Fernando Garzon, Benjamin J. Brownlee, Thomas L. Peng
  • Publication number: 20210395910
    Abstract: An ion exchange membrane separated two electrode flow analyzer for continuous aqueous electrochemical heavy metal detection is disclosed. The electrochemical cell includes a gas diffusion counter/reference electrode, a flooded flow through working electrode, and an ion exchange membrane that separates the gas diffusion counter/reference electrode and the flooded flow through working electrode. A method of continuous fluid analysis using a multi-electrode flow analyzer is also disclosed, including passing an aqueous sample through a first inlet flow area and into a working electrode of a multi-electrode flow analyzer, passing a gas mixture through a second inlet flow area and into a counter/reference electrode of the multi-electrode flow analyzer, depositing an analyte onto a surface of the working electrode, stripping the analyte from the surface of the working electrode by sweeping a range of a potential applied to the surface of the working electrode.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 23, 2021
    Inventors: Tybur Quinton Casuse, Fernando Garzon, Jose Manuel Cerrato Corrales
  • Publication number: 20210094839
    Abstract: An electrolytic cell and method for synthesizing ammonia by utilizing a lithium selective membrane in the electrolytic cell and providing at least one lithium halogen salt as an electrolyte in the electrochemical process of producing ammonia. The reaction utilizes a hydrogen halide or hydrogen sulfide as a hydrogen oxidant in the process, and allows the regeneration of lithium halide salts that can be recycled back into the cell reaction.
    Type: Application
    Filed: January 22, 2019
    Publication date: April 1, 2021
    Inventors: Fernando GARZON, Shekar BALAGOPAL
  • Publication number: 20080006532
    Abstract: The present invention relates to an electrochemical gas sensor for measuring gas concentrations of chemical species. More particularly, the invention relates to an electrochemical sensor that measures ammonia and total nitrogen oxides.
    Type: Application
    Filed: August 1, 2007
    Publication date: January 10, 2008
    Inventors: Rangachary Mukundan, Eric Brosha, Fernando Garzon
  • Publication number: 20070193883
    Abstract: A mixed potential sensor for oxidizable or reducible gases and a method of making. A substrate is provided and two electrodes are formed on a first surface of the substrate, each electrode being formed of a different catalytic material selected to produce a differential voltage between the electrodes from electrochemical reactions of the gases catalyzed by the electrode materials. An electrolytic layer of an electrolyte is formed over the electrodes to cover a first portion of the electrodes from direct exposure to the gases with a second portion of the electrodes uncovered for direct exposure to the gases.
    Type: Application
    Filed: January 20, 2004
    Publication date: August 23, 2007
    Inventors: Fernando Garzon, Eric Brosha, Rangachary Mukundan
  • Patent number: 7214333
    Abstract: A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: May 8, 2007
    Assignee: Los Alamos National Security, LLC
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon
  • Publication number: 20060231987
    Abstract: A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.
    Type: Application
    Filed: April 19, 2005
    Publication date: October 19, 2006
    Inventors: Rangachary Mukundan, Eric Brosha, Fernando Garzon
  • Publication number: 20060231420
    Abstract: A solid state electrochemical gas sensor for detecting trace amounts of explosive materials and a method of detecting such explosives. The sensor has at least two electrodes. The at least two electrodes include a first catalytic electrode and a second catalytic electrode that are dissimilar and an electrolyte disposed between the first catalytic electrode and the second catalytic electrode. The sensor detects at least one gaseous specie emitted by the explosive material. At least one of a potential difference and a current flow is generated by at least one of catalytic and electrochemical reactions of the gaseous species emitted by the explosive material on one of the first catalytic electrode, second catalytic electrode, and the electrolyte. An explosive detection system that incorporates such sensors and methods is also described.
    Type: Application
    Filed: April 19, 2005
    Publication date: October 19, 2006
    Inventors: Fernando Garzon, Eric Brosha, Rangachary Mukundan
  • Publication number: 20040112744
    Abstract: A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 17, 2004
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon
  • Publication number: 20040016104
    Abstract: A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 29, 2004
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon
  • Patent number: 6656336
    Abstract: A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon
  • Patent number: 6605202
    Abstract: A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 12, 2003
    Assignee: The Regents of the University of California
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon
  • Publication number: 20020185376
    Abstract: A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 12, 2002
    Inventors: Rangachary Mukundan, Eric L. Brosha, Fernando Garzon