Patents by Inventor Ferruccio Frisina

Ferruccio Frisina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7838927
    Abstract: A process manufactures a multi-drain power electronic device on a semiconductor substrate of a first conductivity type and includes: forming a first semiconductor layer of the first conductivity type on the substrate, forming a second semiconductor layer of a second conductivity type on the first semiconductor layer, forming, in the second semiconductor layer, a first plurality of implanted regions of the first conductivity type using a first implant dose, forming, above the second semiconductor layer, a superficial semiconductor layer of the first conductivity type, forming in the surface semiconductor layer body regions of the second conductivity type, thermally diffusing the implanted regions to form a plurality of electrically continuous implanted column regions along the second semiconductor layer, the plurality of implanted column regions delimiting a plurality of column regions of the second conductivity type aligned with the body regions.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: November 23, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Mario Giuseppe Saggio, Ferruccio Frisina, Simone Rascuna
  • Patent number: 7790520
    Abstract: An embodiment of a process for manufacturing a semiconductor power device envisages the steps of: providing a body made of semiconductor material having a first top surface; forming an active region with a first type of conductivity in the proximity of the first top surface and inside an active portion of the body; and forming an edge-termination structure. The edge-termination structure is formed by: a ring region having the first type of conductivity and a first doping level, set within a peripheral edge portion of the body and electrically connected to the active region; and a guard region, having the first type of conductivity and a second doping level, higher than the first doping level, set in the proximity of the first top surface and connecting the active region to the ring region.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 7, 2010
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Mario Giuseppe Saggio, Domenico Murabito, Ferruccio Frisina
  • Patent number: 7754566
    Abstract: A power electronic device is integrated on a semiconductor substrate of a first type of conductivity. The device includes a plurality of elemental units, and each elemental unit includes a body region of a second type of conductivity which is realized on a semiconductor layer of the first type of conductivity formed on the semiconductor substrate, and a column region of the first type of conductivity which is realized in said semiconductor layer below the body region. The semiconductor layer includes multiple semiconductor layers which overlap each other. The resistivity of each layer is different from that of the other layers. The column region includes a plurality of doped sub-regions, each realized in one of the semiconductor layers. The amount of charge of each doped sub-region balances the amount of charge of the corresponding semiconductor layer in which each doped sub-region is realized.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: July 13, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Mario Guiseppe Saggio, Ferruccio Frisina
  • Publication number: 20100163888
    Abstract: An embodiment of a process for manufacturing an electronic device on a semiconductor body of a material with wide forbidden bandgap having a first conductivity type.
    Type: Application
    Filed: December 17, 2009
    Publication date: July 1, 2010
    Applicant: STMICROELECTRONICS S.R.L
    Inventors: Mario Giuseppe SAGGIO, Edoardo ZANETTI, Ferruccio FRISINA
  • Publication number: 20100093136
    Abstract: An embodiment of a process for manufacturing a semiconductor power device envisages the steps of: providing a body made of semiconductor material having a first top surface; forming an active region with a first type of conductivity in the proximity of the first top surface and inside an active portion of the body; and forming an edge-termination structure. The edge-termination structure is formed by: a ring region having the first type of conductivity and a first doping level, set within a peripheral edge portion of the body and electrically connected to the active region; and a guard region, having the first type of conductivity and a second doping level, higher than the first doping level, set in the proximity of the first top surface and connecting the active region to the ring region.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Applicant: STMicroelectronics, S.r.l.
    Inventors: Mario Giuseppe Saggio, Domenico Murabito, Ferruccio Frisina
  • Patent number: 7569883
    Abstract: Power electronic MOS device of the type comprising a plurality of elementary power MOS transistors and a gate structure comprising a plurality of conductive strips realized with a first conductive material such as polysilicon, a plurality of gate fingers or metallic tracks connected to a gate pad and at least a connection layer arranged in series to at least one of said conductive strip. Such gate structure comprising at least a plurality of independent islands formed on the upper surface of the conductive strips and suitably formed on the connection layers. Said islands being realized with at least one second conductive material such as silicide.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: August 4, 2009
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri, Antonio Giuseppe Grimaldi, Gaetano Bazzano
  • Publication number: 20090179263
    Abstract: An embodiment of a process for manufacturing a power semiconductor device envisages the steps of: providing a body of semiconductor material having a top surface and having a first conductivity; forming columnar regions having a second type of conductivity within the body of semiconductor material, and surface extensions of the columnar regions above the top surface; and forming doped regions having the second type of conductivity, in the proximity of the top surface and in contact with the columnar regions. The doped regions are formed at least partially within the surface extensions of the columnar regions; the surface extensions and the doped regions have a non-planar surface pattern, in particular with a substantially V-shaped groove.
    Type: Application
    Filed: April 21, 2006
    Publication date: July 16, 2009
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alfio Guarnera, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 7560368
    Abstract: A process for integrating a Schottky contact inside the apertures of the elementary cells that constitute the integrated structure of the insulated gate power device in a totally self-alignment manner does not requires a dedicated masking step. This overcomes the limits to the possibility of increasing the packing density of the cellular structure of the integrated power device, while permitting improved performances of the co-integrated Schottky diode under inverse polarization of the device and producing other advantages. A planar integrated insulated gate power device with high packing density of the elementary cells that compose it, having a Schottky diode electrically in parallel to the co-integrated device, is also disclosed.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: July 14, 2009
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Angelo Magriā€², Ferruccio Frisina
  • Publication number: 20090176341
    Abstract: A power electronic device is integrated on a semiconductor substrate of a first type of conductivity. The device includes a plurality of elemental units, and each elemental unit includes a body region of a second type of conductivity which is realized on a semiconductor layer of the first type of conductivity formed on the semiconductor substrate, and a column region of the first type of conductivity which is realized in said semiconductor layer below the body region. The semiconductor layer includes multiple semiconductor layers which overlap each other. The resistivity of each layer is different from that of the other layers. The column region includes a plurality of doped sub-regions, each realized in one of the semiconductor layers. The amount of charge of each doped sub-region balances the amount of charge of the corresponding semiconductor layer in which each doped sub-region is realized.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 9, 2009
    Applicant: STMicroelectronics S.r.I.
    Inventors: Mario G. Saggio, Ferruccio Frisina
  • Publication number: 20090159969
    Abstract: Process for manufacturing a semiconductor power device, wherein a trench is formed in a semiconductor body having a first conductivity type; the trench is annealed for shaping purpose; and the trench is filled with semiconductor material via epitaxial growth so as to obtain a first column having a second conductivity type. The epitaxial growth is performed by supplying a gas containing silicon and a gas containing dopant ions of the second conductivity type in presence of a halogenide gas and occurs with uniform distribution of the dopant ions. The flow of the gas containing dopant ions is varied according to a linear ramp during the epitaxial growth; in particular, in the case of selective growth of the semiconductor material in the presence of a hard mask, the flow decreases; in the case of non-selective growth, in the absence of hard mask, the flow increases.
    Type: Application
    Filed: April 11, 2006
    Publication date: June 25, 2009
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Simona Lorenti, Cateno Marco Camalleri, Mario Giuseppe Saggio, Ferruccio Frisina
  • Patent number: 7498619
    Abstract: A power electronic device is integrated on a semiconductor substrate of a first type of conductivity. The device includes a plurality of elemental units, and each elemental unit includes a body region of a second type of conductivity which is realized on a semiconductor layer of the first type of conductivity formed on the semiconductor substrate, and a column region of the first type of conductivity which is realized in said semiconductor layer below the body region. The semiconductor layer includes multiple semiconductor layers which overlap each other. The resistivity of each layer is different from that of the other layers. The column region includes a plurality of doped sub-regions, each realized in one of the semiconductor layers. The amount of charge of each doped sub-region balances the amount of charge of the corresponding semiconductor layer in which each doped sub-region is realized.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: March 3, 2009
    Assignee: STMicroelectronics S.r.l.
    Inventors: Mario G. Saggio, Ferruccio Frisina
  • Publication number: 20090001460
    Abstract: A process manufactures a multi-drain power electronic device on a semiconductor substrate of a first conductivity type and includes: forming a first semiconductor layer of the first conductivity type on the substrate, forming a second semiconductor layer of a second conductivity type on the first semiconductor layer, forming, in the second semiconductor layer, a first plurality of implanted regions of the first conductivity type using a first implant dose, forming, above the second semiconductor layer, a superficial semiconductor layer of the first conductivity type, forming in the surface semiconductor layer body regions of the second conductivity type, thermally diffusing the implanted regions to form a plurality of electrically continuous implanted column regions along the second semiconductor layer, the plurality of implanted column regions delimiting a plurality of column regions of the second conductivity type aligned with the body regions.
    Type: Application
    Filed: January 8, 2008
    Publication date: January 1, 2009
    Applicant: STMicroelectronics S.r.l.
    Inventors: Mario Giuseppe Saggio, Ferruccio Frisina, Simone Rascuna
  • Publication number: 20080224204
    Abstract: A process manufactures a multi-drain power electronic device integrated on a semiconductor substrate of a first type of conductivity whereon a drain semiconductor layer is formed. The process includes: forming a first semiconductor epitaxial layer of the first type of conductivity of a first value of resistivity forming the drain epitaxial layer on the semiconductor substrate, forming first sub-regions of a second type of conductivity by means of a first selective implant step with a first implant dose, forming second sub-regions of the first type of conductivity by means of a second implant step with a second implant dose, forming a surface semiconductor layer wherein body regions of the second type of conductivity are formed being aligned with the first sub-regions, carrying out a thermal diffusion process so that the first sub-regions form a single electrically continuous column region being aligned and in electric contact with the body regions.
    Type: Application
    Filed: January 8, 2008
    Publication date: September 18, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giuseppe Saggio, Ferruccio Frisina, Simone Rascuna
  • Publication number: 20080185594
    Abstract: A method manufactures a vertical power MOS transistor on a semiconductor substrate comprising a first superficial semiconductor layer of a first conductivity type, comprising: forming trench regions in the first semiconductor layer, filling in said trench regions with a second semiconductor layer of a second conductivity type, to form semiconductor portions of the second conductivity type contained in the first semiconductor layer, carrying out an ion implantation of a first dopant type in the semiconductor portions for forming respective implanted body regions of said second conductivity type, carrying out an ion implantation of a second dopant type in one of the implanted body regions for forming an implanted source region of the first conductivity type inside one of the body regions, carrying out an activation thermal process of the first and second dopant types with low thermal budget suitable to complete said formation of the body and source regions.
    Type: Application
    Filed: January 8, 2008
    Publication date: August 7, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Ferruccio Frisina, Mario Giuseppe Saggio
  • Publication number: 20080185593
    Abstract: A method of manufacturing a vertical power MOS transistor on a wide band gap semiconductor substrate having a wide band gap superficial semiconductor layer, including the steps of forming a screening structure on the superficial semiconductor layer that leaves a plurality of areas of the superficial semiconductor layer exposed, carrying out at least a first ion implantation of a first type of dopant in the superficial semiconductor layer for forming at least one deep implanted region, carrying out at least a second ion implantation of the first type of dopant in the superficial semiconductor layer for forming at least one implanted body region of the MOS transistor aligned with the deep implanted region, carrying out at least one ion implantation of a second type of dopant in the superficial semiconductor layer for forming at least an implanted source region of the MOS transistor inside the at least one implanted body region, and a low budget activation thermal process of the first and second dopant types sui
    Type: Application
    Filed: January 8, 2008
    Publication date: August 7, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giuseppe Saggio, Ferruccio Frisina
  • Publication number: 20080001223
    Abstract: An embodiment of a process for manufacturing a semiconductor power device envisages the steps of: providing a body made of semiconductor material having a first top surface; forming an active region with a first type of conductivity in the proximity of the first top surface and inside an active portion of the body; and forming an edge-termination structure. The edge-termination structure is formed by: a ring region having the first type of conductivity and a first doping level, set within a peripheral edge portion of the body and electrically connected to the active region; and a guard region, having the first type of conductivity and a second doping level, higher than the first doping level, set in the proximity of the first top surface and connecting the active region to the ring region.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 3, 2008
    Inventors: Mario Saggio, Domenico Murabito, Ferruccio Frisina
  • Patent number: 7304335
    Abstract: A vertical-conduction and planar-structure MOS device having a double thickness gate oxide includes a semiconductor substrate including spaced apart active areas in the semiconductor substrate and defining a JFET area therebetween. The JFET area also forms a channel between the spaced apart active areas. A gate oxide is on the semiconductor substrate and includes a first portion having a first thickness on the active areas and at a periphery of the JFET area, and a second portion having a second thickness on a central area of the JFET area. The second thickness is greater than the first thickness. The JFET area also includes an enrichment region under the second portion of the gate oxide.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: December 4, 2007
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Magri', Ferruccio Frisina, Giuseppe Ferla, Marco Camalleri
  • Publication number: 20070102725
    Abstract: A process for integrating a Schottky contact inside the apertures of the elementary cells that constitute the integrated structure of the insulated gate power device in a totally self-alignment manner does not requires a dedicated masking step. This overcomes the limits to the possibility of increasing the packing density of the cellular structure of the integrated power device, while permitting improved performances of the co-integrated Schottky diode under inverse polarization of the device and producing other advantages. A planar integrated insulated gate power device with high packing density of the elementary cells that compose it, having a Schottky diode electrically in parallel to the co-integrated device, is also disclosed.
    Type: Application
    Filed: September 12, 2006
    Publication date: May 10, 2007
    Inventors: Angelo Magri', Ferruccio Frisina
  • Publication number: 20060244059
    Abstract: Power MOS device of the type comprising a plurality of elementary power MOS transistors having respective gate structures and comprising a gate oxide with double thickness having a thick central part and lateral portions of reduced thickness. Such device exhibiting gate structures comprising first gate conductive portions overlapped onto said lateral portions of reduced thickness to define, for the elementary MOS transistors, the gate electrodes, as well as a conductive structure or mesh. Such conductive structure comprising a plurality of second conductive portions overlapped onto the thick central part of gate oxide and interconnected to each other and to the first gate conductive portions by means of a plurality of conducive bridges.
    Type: Application
    Filed: November 21, 2005
    Publication date: November 2, 2006
    Inventors: Angelo Magri, Ferruccio Frisina, Giuseppe Ferla
  • Patent number: 7126173
    Abstract: An electronic power device of improved structure is fabricated with MOS technology to have a gate finger region and corresponding source regions on either sides of the gate region. This device has a first-level metal layer arranged to independently contact the gate region and source regions, and has a protective passivation layer arranged to cover the gate region. Advantageously, a wettable metal layer, deposited onto the passivation layer and the first-level metal layer, overlies said source regions. In this way, the additional wettable metal layer is made to act as a second-level metal.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 24, 2006
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Ferruccio Frisina, Antonio Pinto, Angelo Magri