Patents by Inventor Florencio Garcia

Florencio Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851595
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of ?1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: December 26, 2023
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar, William Winder Beers
  • Publication number: 20230265337
    Abstract: A converter element is provided, comprising a first conversion region comprising a first phosphor, a second conversion region comprising a second phosphor, wherein the first phosphor has upon excitation a faster radiation decay lifetime than the second phosphor, wherein at least one of the first and second phosphor is embedded in a matrix material, wherein the matrix material comprises a three-dimensionally crosslinked polysiloxane having an organic content of less than 40 wt %. Further, a method for producing a converter element and a radiation emitting device are provided.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Inventors: Florencio GARCIA, Alan PIQUETTE, Gertrud KRÄUTER
  • Publication number: 20210340443
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of ?1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: James Edward MURPHY, Anant Achyut SETLUR, Florencio GARCIA, Robert Joseph LYONS, Ashfaqul Islam CHOWDHURY, Nagaveni KARKADA, Prasanth Kumar NAMMALWAR, William Winder BEERS
  • Patent number: 11098246
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of ?1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 24, 2021
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar, William Winder Beers
  • Patent number: 11008509
    Abstract: A population of coated phosphor particles is presented. Each coated phosphor particle has a core including a Mn4+ doped phosphor and a shell including aluminum oxide, titanium oxide, zirconium oxide, zinc oxide, tin oxide, silicon dioxide, hafnium oxide, indium oxide, indium tin oxide, potassium fluoride, titanium nitride, boron nitride, silicon nitride, a polymer material, or a combination thereof. A process for preparing the population of coated phosphor particles is also presented.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: May 18, 2021
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: James Edward Murphy, Florencio Garcia
  • Publication number: 20190203116
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of ?1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: James Edward MURPHY, Anant Achyut SETLUR, Florencio GARCIA, Robert Joseph LYONS, Ashfaqul Islam CHOWDHURY, Nagaveni KARKADA, Prasanth Kumar NAMMALWAR, William Winder BEERS
  • Publication number: 20190136128
    Abstract: A population of coated phosphor particles is presented. Each coated phosphor particle has a core including a Mn4+ doped phosphor and a shell including aluminum oxide, titanium oxide, zirconium oxide, zinc oxide, tin oxide, silicon dioxide, hafnium oxide, indium oxide, indium tin oxide, potassium fluoride, titanium nitride, boron nitride, silicon nitride, a polymer material, or a combination thereof. A process for preparing the population of coated phosphor particles is also presented.
    Type: Application
    Filed: June 27, 2017
    Publication date: May 9, 2019
    Inventors: James Edward Murphy, Florencio Garcia
  • Patent number: 10230022
    Abstract: A lighting apparatus is presented. The lighting apparatus includes a semiconductor light source, a color stable Mn4+ doped phosphor and a quantum dot material, each of the color stable Mn4+ doped phosphor and the quantum dot material being radiationally coupled to the semiconductor light source. A percentage intensity loss of the color stable Mn4+ doped phosphor after exposure to a light flux of at least 20 w/cm2 at a temperature of at least 50 degrees Celsius for at least 21 hours is ?4%. A backlight device including the lighting apparatus is also presented.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: March 12, 2019
    Assignee: General Electric Company
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista
  • Patent number: 10193030
    Abstract: A lighting apparatus includes an LED light source radiationally coupled to a composite material including a phosphor of formula I and a thermally conductive material dispersed in at least a portion of a binder material. The thermally conductive material includes a material selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofibers, carbon nanotubes, silver metal nanoparticles, copper metal nanoparticles, gold metal nanoparticles, aluminum metal nanoparticles, boron nitride, silicon nitride, an alkali metal halide, calcium fluoride, magnesium fluoride, a compound of formula II, and combinations thereof.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 29, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Megan Marie Brewster
  • Patent number: 10131835
    Abstract: A phosphor composition is derived from combining K2SiF6:Mn4+ in solid form with a saturated solution of a manganese-free complex fluoride including a composition of formula I: A3[MF6], where A is selected from Na, K, Rb, and combinations thereof and M is selected from Al, Ga, In, Sc, Y, Gd, and combinations thereof. The composition of formula I: A3[MF6] has a water solubility lower than a water solubility of K2SiF6. A lighting apparatus including the phosphor composition is also provided.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: November 20, 2018
    Assignee: General Electric Company
    Inventors: Anant Achyut Setlur, Robert Joseph Lyons, Prasanth Kumar Nammalwar, James Edward Murphy, Florencio Garcia, Ravikumar Hanumantha
  • Patent number: 9938457
    Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 10, 2018
    Assignee: General Electric Company
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
  • Patent number: 9929319
    Abstract: A process for fabricating a LED lighting apparatus includes disposing a composite coating on a surface of a LED chip. The composite coating comprises a first composite layer having a manganese doped phosphor of formula I and a first binder, and a second composite layer comprising a second phosphor composition and a second binder. The first binder, the second binder or both include a poly(meth)acrylate. Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: March 27, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Anant Achyut Setlur, Stanton Earl Weaver, Thomas Bert Gorczyca, Ashfaqul Islam Chowdhury, James Edward Murphy, Florencio Garcia
  • Publication number: 20180079955
    Abstract: Methods for fabricating coated semiconductor elements are presented. The methods include the steps of combining a phosphor of formula I and a polymer binder to form a composite material, providing a semiconductor wafer including IniGajAlkN, wherein 0?i; 0?j; 0?k, and a sum of i, j and k is equal to 1, coating the composite material on a surface of the semiconductor wafer to form a coated semiconductor wafer, and dicing the coated semiconductor wafer using a cutting fluid apparatus to form one or more coated semiconductor elements. A cutting fluid of the cutting fluid apparatus includes a C1-C20 alcohol, a C1-C20 ketone, a C1-C20 acetate compound, acetic acid, oleic acid, carboxylic acid, a source of A, silicic acid, or a combination thereof.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista, Anant Achyut Setlur, William Winder Beers, Fangming Du
  • Publication number: 20180040782
    Abstract: A lighting apparatus includes an LED light source radiationally coupled to a composite material including a phosphor of formula I and a thermally conductive material dispersed in at least a portion of a binder material. The thermally conductive material includes a material selected from the group consisting of indium oxide, tin oxide, indium tin oxide, calcium oxide, barium oxide, strontium oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, diamond, graphene, polyethylene nanofibers, carbon nanotubes, silver metal nanoparticles, copper metal nanoparticles, gold metal nanoparticles, aluminum metal nanoparticles, boron nitride, silicon nitride, an alkali metal halide, calcium fluoride, magnesium fluoride, a compound of formula II, and combinations thereof.
    Type: Application
    Filed: August 8, 2016
    Publication date: February 8, 2018
    Inventors: Digamber Gurudas Porob, James Edward Murphy, Florencio Garcia, Megan Marie Brewster
  • Patent number: 9698314
    Abstract: A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Publication number: 20170145304
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of 1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 25, 2017
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar, William Winder Beers
  • Patent number: 9580648
    Abstract: A color stable Mn4+ doped phosphor of formula I, Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein % intensity loss of the phosphor after exposure to light flux of at least 80 w/cm2 at a temperature of at least 50° C. for at least 21 hours is ?4%.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Patent number: 9567516
    Abstract: A process for synthesizing a manganese (Mn4+) doped phosphor includes milling particles of the a phosphor precursor of formula I, and contacting the milled particles with a fluorine-containing oxidizing agent at an elevated temperature Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 14, 2017
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Srinivas Prasad Sista
  • Publication number: 20160376499
    Abstract: A phosphor composition is derived from combining K2SiF6:Mn4+ in solid form with a saturated solution of a manganese-free complex fluoride including a composition of formula I:A3[MF6], where A is selected from Na, K, Rb, and combinations thereof and M is selected from Al, Ga, In, Sc, Y, Gd, and combinations thereof. The composition of formula I:A3[MF6] has a water solubility lower than a water solubility of K2SiF6. A lighting apparatus including the phosphor composition is also provided.
    Type: Application
    Filed: December 16, 2014
    Publication date: December 29, 2016
    Inventors: Anant Achyut Setlur, Robert Joseph Lyons, Prasanth Kumar Nammalwar, James Edward Murphy, Florencio Garcia, Ravikumar Hanumantha
  • Patent number: 9385282
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, Ax(M1?z,Mnz)Fy??I at an elevated temperature with a fluorine-containing oxidizing agent in gaseous form to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and 0.03?z?0.10.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: July 5, 2016
    Assignee: General Electric Company
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Ashfaqul Islam Chowdhury, Srinivas Prasad Sista