Patents by Inventor Florent Cros

Florent Cros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115147
    Abstract: A system and method are provided for determining a pressure associated with a lumen of a body. A wireless sensor is positioned in the lumen of the body. The sensor comprises an LC resonant circuit having a resonant frequency configured to vary in response to changes in pressure in the lumen. One or more sensor calibration parameters are stored at an external base unit. The external based unit generates and transmits an energizing signal. A ring down response is received from the wireless sensor. The system and method determine the resonant frequency of the LC resonant circuit from the ring down response and calculate the pressure in the lumen from the resonant frequency of the LC resonant circuit utilizing the one or more sensor calibration parameters associated with the LC resonant circuit.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 11, 2024
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20240090964
    Abstract: An apparatus and methods of use thereof, the apparatus comprising: a medical device, configured to reside and to be manipulated within a first lumen; and a driving system, configured to manipulate—and/or control—the medical device, via a second lumen. The driving system comprising: a catheter, configured to be inserted into—and to navigate—or to be navigated—within the second lumen; and a driver, configured to travel within the catheter, and to remotely manipulate—and/or control—the medical device residing in the first lumen.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 21, 2024
    Applicant: BIONAUT LABS LTD.
    Inventors: Florent CROS, Alex KISELYOV, Suehyun CHO, Michael KARDOSH, Michael SHPIGELMACHER, Be'eri Berl KATZNELSON
  • Publication number: 20240079124
    Abstract: A method for providing localized treatment at a target site in the brain of a patient is provided. The method comprises providing a system comprising a miniature device configured to carry one or more therapeutic components for performing the treatment, and an external system configured to direct the miniature device; inserting the miniature device to a starting location within the patient; operating the external system to direct the miniature device to travel along an access path from the starting location to the target site; and administering the therapeutic component at the target site. A system for performing the method is further provided.
    Type: Application
    Filed: September 5, 2023
    Publication date: March 7, 2024
    Applicant: BIONAUT LABS LTD.
    Inventors: Alex KISELYOV, Michael SHPIGELMACHER, Michael KARDOSH, Florent CROS, Suehyun CHO, Darrell HARRINGTON, William G. LOUDON
  • Publication number: 20240079131
    Abstract: A system for facilitating performing a therapeutic activity at a predetermined treatment site in a patient is provided. The system comprises an elongated miniature device extending along a longitudinal axis spanning between a distal cutting end formed with a sharp cutting portion, and a blunt proximal abutting end. The elongated body comprises a substantially non-convex bottom surface extending substantially between the cutting end and the abutting end. The system further comprises a driving device configured to generate a varying magnetic field to remotely control motion of the miniature device.
    Type: Application
    Filed: August 31, 2023
    Publication date: March 7, 2024
    Applicant: BIONAUT LABS LTD.
    Inventors: Kishore Kumar KONDABATNI, Michael KARDOSH, SueHyun CHO, Florent CROS, Michael SHPIGELMACHER, Alex KISELYOV
  • Patent number: 11890082
    Abstract: A system and method are provided for determining a pressure associated with a lumen of a body. A wireless sensor is positioned in the lumen of the body. The sensor comprises an LC resonant circuit having a resonant frequency configured to vary in response to changes in pressure in the lumen. One or more sensor calibration parameters are stored at an external base unit. The external based unit generates and transmits an energizing signal. A ring down response is received from the wireless sensor. The system and method determine the resonant frequency of the LC resonant circuit from the ring down response and calculate the pressure in the lumen from the resonant frequency of the LC resonant circuit utilizing the one or more sensor calibration parameters associated with the LC resonant circuit.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 6, 2024
    Assignee: TC1 LLC
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11684276
    Abstract: An implantable wireless sensor is provided for determining a pressure of a lumen in a body. The sensor comprises a sensor body comprising a plurality of substrates, at least a portion of the substrates comprising a first dielectric material. An LC resonant circuit is contained with the sensor body. A capacitance of the LC resonant circuit is configured to vary in response to changes in pressure in the lumen. A first anchoring element is coupled to a proximal end of the sensor body and a second anchoring element is coupled to a distal end of the sensor body. The first and second anchoring elements are configured to lodge the sensor body within the lumen. A second dielectric material, different than the first dielectric material, is provided over at least a portion of at least one of the plurality of substrates.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 27, 2023
    Assignee: TC1, LLC
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20230052455
    Abstract: The present disclosure relates to systems that comprise a millimeter size tetherless object powered by an external magnetic field, and an interactive hardware-software platform separate from the miniature device that generates, modulates and controls magnetic fields in a defined three-dimensional operational volume to propel, navigate the miniature device to a specific anatomical target to complete a (microsurgical) mission or task, as well as using such systems to perform microsurgery in the central nervous system (CNS).
    Type: Application
    Filed: August 26, 2022
    Publication date: February 16, 2023
    Applicant: BIONAUT LABS LTD.
    Inventors: Florent CROS, Michael SHPIGELMACHER, Kishore Kumar KONDABATNI, Alex KISELYOV
  • Publication number: 20230038074
    Abstract: A miniature device configured to be maneuvered within a patient under manipulation by an external magnetic field and to selectively perform a predefined function is provided. The miniature device comprises a shell defining therewithin an internal cavity, and a magnetic arrangement disposed within the cavity. The miniature device is configured such that the magnetic arrangement, within a rotating magnetic field, effects one of performance of the function and propulsion of the miniature device within the patient, and, within a magnetic field gradient, effects the other of performance of the function and propulsion of the miniature device within the patient.
    Type: Application
    Filed: December 16, 2020
    Publication date: February 9, 2023
    Applicant: BIONAUT LABS LTD.
    Inventors: Florent CROS, Michael SHPIGELMACHER, Alex KISELYOV, Darrell HARRINGTON, Suehyun CHO, Hovhannes SARGSYAN
  • Publication number: 20220409871
    Abstract: A miniature device is provided for use in a system configured to deliver a therapeutic component to a treatment site in a patient. The miniature device comprises at least one steering portion comprising a magnetic material, and at least one carrier portion affixed to the steering portion and comprising the therapeutic component. The carrier portion is configured to at least partially dissipate under one or more predetermined conditions at the treatment site, thereby releasing the therapeutic component. Further provided is a system comprising one or more such miniature devices and a magnetic inducing apparatus configured to be operated to generate a varying magnetic field, thereby remotely controlling motion of the miniature device.
    Type: Application
    Filed: November 4, 2020
    Publication date: December 29, 2022
    Applicant: BIONAUT LABS LTD
    Inventors: Michael SHPIGELMACHER, Alex KISELYOV, Florent CROS, Darrell HARRINGTON, Suehyun CHO, John CAPUTO
  • Publication number: 20220265312
    Abstract: A method and apparatus for safely and reliably accessing a subarachnoid space (SAS) or other target area of a patient is provided in which a tube having at least one lumen with a tissue puncture device therein is inserted into the patient near the tissue. The lumen has a suction port at one end adapted to suction the dura/arachnoid tissue away from the pia mater so that the tissue can be punctured to access the SAS space. The movement of the needle in the lumen is controlled by controlling a magnetic field. Tissue puncture devices for use alone or in connection with the apparatus are also provided.
    Type: Application
    Filed: July 28, 2020
    Publication date: August 25, 2022
    Applicant: BIONAUT LABS LTD.
    Inventors: Michael SHPIGELMACHER, Michael KARDOSH, Be'eri Berl KATZNELSON, Eran OREN, Alex KISELYOV, Florent CROS, Suehyun CHO, Darrell HARRINGTON, Olin PALMER
  • Publication number: 20220079456
    Abstract: A system and method are provided for determining a pressure associated with a lumen of a body. A wireless sensor is positioned in the lumen of the body. The sensor comprises an LC resonant circuit having a resonant frequency configured to vary in response to changes in pressure in the lumen. One or more sensor calibration parameters are stored at an external base unit. The external based unit generates and transmits an energizing signal. A ring down response is received from the wireless sensor. The system and method determine the resonant frequency of the LC resonant circuit from the ring down response and calculate the pressure in the lumen from the resonant frequency of the LC resonant circuit utilizing the one or more sensor calibration parameters associated with the LC resonant circuit.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 17, 2022
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20210369123
    Abstract: A system and method are provided to deploy an implant assembly in a vessel. The implant assembly comprises a pressure sensor having a body, and first and second anchoring members coupled to the body of the pressure sensor. A delivery apparatus comprises a shaft having proximal and distal ends, the shaft including a main lumen and a secondary lumen, the main lumen extending along at least a portion of the shaft. The secondary lumen extends along at least a portion of the length of the shaft, the secondary lumen joined with first and second ports provided in a sidewall of the shaft. A tether wire is configured to be slidably positioned within the secondary lumen, the tether wire having a distal portion configured to secure the implant assembly against the sidewall.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11179048
    Abstract: A system and method are provided to deploy an implant assembly in a vessel. The implant assembly comprises a pressure sensor having a body, and first and second anchoring members coupled to the body of the pressure sensor. A delivery apparatus comprises a shaft having proximal and distal ends, the shaft including a main lumen and a secondary lumen, the main lumen extending along at least a portion of the shaft. The secondary lumen extends along at least a portion of the length of the shaft, the secondary lumen joined with first and second ports provided in a sidewall of the shaft. A tether wire is configured to be slidably positioned within the secondary lumen, the tether wire having a distal portion configured to secure the implant assembly against the sidewall.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: November 23, 2021
    Assignee: ST. JUDE MEDICAL LUXEMBOURG HOLDINGS II S.A.R.L. (“SJM LUX 11”)
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11103146
    Abstract: An implantable wireless sensor is provided that comprises a plurality of substrates joined together to form a body with a hermetically sealed cavity therein. A capacitor (C) is provided within the cavity. A first capacitor plate is formed on an internal surface of the first substrate. An inductor (L) is provided within the cavity and coupled to form an LC resonant circuit. At least a portion of the first substrate comprises a deflectable region mechanically coupled to the first capacitor plate. The deflectable region is configured to deflect in response to changes in pressure in the artery altering a spacing between the capacitor plates and altering a resonant frequency of the LC resonant circuit. First and second anchoring elements are coupled to the body and include flexible wire loops configured to extend outward from the body to lodge within a lumen of the artery.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: August 31, 2021
    Assignee: ST. JUDE MEDICAL LUXEMBOURG HOLDINGS II S.A.R.L. (“SJM LUX 11”)
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11103147
    Abstract: A method and system are provided for determining a pressure associated with a lumen of a patient. A wireless sensor is positioned in the lumen of the patient. The sensor has a body with a pressure sensitive surface, including a sealed cavity that holds an inductive-capacitive (LC) resonant circuit. A capacitance of the LC resonant circuit is configured to vary in response to changes in pressure in the lumen. The LC resonant circuit has a charge time related to a quality factor (Q) of the LC resonant circuit. The LC resonant circuit is energized with an energizing signal during a measurement cycle. The energizing signal has a duty cycle with an on-time that is set, in part, based on the charge time. A ring down response is received from the wireless sensor. The ring down response is utilized to calculate the pressure associated with the lumen of the patient.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: August 31, 2021
    Assignee: ST. JUDE MEDICAL LUXEMBOURG HOLDINGS II S.A.R.L. (“SJM LUX 11”)
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20210177279
    Abstract: A system and method are provided to deploy an implant assembly in a vessel. The implant assembly comprises a pressure sensor having a body, and first and second anchoring members coupled to the body of the pressure sensor. A delivery apparatus comprises a shaft having proximal and distal ends, the shaft including a main lumen and a secondary lumen, the main lumen extending along at least a portion of the shaft. The secondary lumen extends along at least a portion of the length of the shaft, the secondary lumen joined with first and second ports provided in a sidewall of the shaft. A tether wire is configured to be slidably positioned within the secondary lumen, the tether wire having a distal portion configured to secure the implant assembly against the sidewall.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20210177277
    Abstract: An implantable wireless sensor is provided that comprises a plurality of substrates joined together to form a body with a hermetically sealed cavity therein. A capacitor (C) is provided within the cavity. A first capacitor plate is formed on an internal surface of the first substrate. An inductor (L) is provided within the cavity and coupled to form an LC resonant circuit. At least a portion of the first substrate comprises a deflectable region mechanically coupled to the first capacitor plate. The deflectable region is configured to deflect in response to changes in pressure in the artery altering a spacing between the capacitor plates and altering a resonant frequency of the LC resonant circuit. First and second anchoring elements are coupled to the body and include flexible wire loops configured to extend outward from the body to lodge within a lumen of the artery.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20210177278
    Abstract: A method and system are provided for determining a pressure associated with a lumen of a patient. A wireless sensor is positioned in the lumen of the patient. The sensor has a body with a pressure sensitive surface, including a sealed cavity that holds an inductive-capacitive (LC) resonant circuit. A capacitance of the LC resonant circuit is configured to vary in response to changes in pressure in the lumen. The LC resonant circuit has a charge time related to a quality factor (Q) of the LC resonant circuit. The LC resonant circuit is energized with an energizing signal during a measurement cycle. The energizing signal has a duty cycle with an on-time that is set, in part, based on the charge time. A ring down response is received from the wireless sensor. The ring down response is utilized to calculate the pressure associated with the lumen of the patient.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11033192
    Abstract: A pressure sensor is provided that comprises an upper wafer formed from a dielectric material, the upper wafer having channels. The upper wafer includes a first capacitor plate and a second capacitor plate formed on a lower surface of the upper wafer. An inductor is contained within the channels in the upper wafer in fixed relation to the first and second capacitor plates. A lower wafer is formed from the dielectric material. A third capacitor plate is formed on an inner surface of the lower wafer. The upper and lower wafers are fused together to form a monolithic housing such that the first and second capacitor plates are arranged in parallel, spaced-apart relation from the third capacitor plate. The lower wafer comprising a pressure sensitive deflective region underlying the third capacitor plate. The deflective region deflects in response to changes in ambient pressure in the medium.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 15, 2021
    Assignee: ST. JUDE MEDICAL LUXEMBOURG HOLDINGS II S.A.R.L. (“SJM LUX 11”)
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 10859602
    Abstract: Transferring electronic probe assemblies to space transformers. In accordance with a first method embodiment, a plurality of probes is formed in a sacrificial material on a sacrificial substrate via microelectromechanical systems (MEMS) processes. The tips of the plurality of probes are formed adjacent to the sacrificial substrate and the remaining structure of the plurality of probes extends outward from the sacrificial substrate. The sacrificial material comprising the plurality of probes is attached to a space transformer. The space transformer includes a plurality of contacts on one surface for contacting the plurality of probes at a probe pitch and a corresponding second plurality of contacts on another surface at a second pitch, larger than the probe pitch, wherein each of the second plurality of contacts is electrically coupled to a corresponding one of the plurality of probes. The sacrificial substrate is removed, and the sacrificial material is removed, leaving the plurality of probes intact.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 8, 2020
    Inventors: Lakshmikanth Namburi, Florent Cros