Patents by Inventor Fokion Egolfopoulos

Fokion Egolfopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220152553
    Abstract: This invention relates to methods and systems for reducing the concentration of SOx and/or NOx in gas streams.
    Type: Application
    Filed: March 11, 2020
    Publication date: May 19, 2022
    Applicants: University of Southern California, Tai Chong Cheang Steamship Co. (H.K.) Limited
    Inventors: Stephen B. CRONIN, Alec NYSTROM, Sriram SUBRAMANIAN, Vyaas GURURAJAN, Haotian SHI, Martin A. GUNDERSEN, William SCHROEDER, Sisi YANG, Christi SCHROEDER, Fokion EGOLFOPOULOS, Tom HUISKAMP
  • Patent number: 9700747
    Abstract: Systems and methods for removal of gas phase contaminants may utilize catalytic oxidation. For example, a method may include passing a gas that includes a gas phase contaminant through a catalytic membrane reactor at a temperature of about 150° C. to about 300° C., wherein the catalytic membrane reactor includes a bundle of tubular inorganic membranes, wherein each of the tubular inorganic membranes comprise a macroporous tubular substrate with an oxidative catalyst and a microporous layer disposed on a bore side of the macroporous tubular substrate, and wherein at least about 50% of the gas flows through the tubular inorganic membranes in a Knudsen flow regime; and oxidizing at least some of the gas phase contaminant with the oxidative catalyst layer, thereby reducing a concentration of the gas phase contaminant in the gas.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 11, 2017
    Inventors: Theodore T. Tsotsis, Fokion Egolfopoulos, Nitin Nair, Richard Prosser, Jyh-Yih Ren, Alireza Divsalar, Mirmohammadyousef Motamedhashemi, Majid Monji
  • Publication number: 20140271419
    Abstract: Systems and methods for removal of gas phase contaminants may utilize catalytic oxidation. For example, a method may include passing a gas that includes a gas phase contaminant through a catalytic membrane reactor at a temperature of about 150° C. to about 300° C., wherein the catalytic membrane reactor includes a bundle of tubular inorganic membranes, wherein each of the tubular inorganic membranes comprise a macroporous tubular substrate with an oxidative catalyst and a microporous layer disposed on a bore side of the macroporous tubular substrate, and wherein at least about 50% of the gas flows through the tubular inorganic membranes in a Knudsen flow regime; and oxidizing at least some of the gas phase contaminant with the oxidative catalyst layer, thereby reducing a concentration of the gas phase contaminant in the gas.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicants: UNIVERSITY OF SOUTHERN CALIFORNIA, GC ENVIRONMENTAL, MEDIA AND PROCESS TECHNOLOGY INC.
    Inventors: Theodore T. Tsotsis, Fokion Egolfopoulos, Nitin Nair, Richard Prosser, Jyh-Yih Ren, Paul Liu, Alireza Divsalar, Yousef Motamedhashemi, Majid Monji