Patents by Inventor Fook Chiong Cheong

Fook Chiong Cheong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948302
    Abstract: An in-line holographic microscope can be used to analyze a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. An assay using the holographic microscope for holographic particle characterization directly detect viruses, antibodies and related targets binding to the surfaces of specifically functionalized micrometer-scale colloidal probe beads. The system detects binding of targets by directly measuring associated changes in the bead's diameter without the need for downstream labeling and analysis.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: April 2, 2024
    Assignees: New York University, Spheryx, Inc
    Inventors: David G. Grier, Fook Chiong Cheong, Kaitlynn Snyder, Rushna Quddus, Lauren E. Altman, Kent Kirshenbaum
  • Patent number: 11921023
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: March 5, 2024
    Assignees: New York University, Spheryx, Inc.
    Inventors: David G. Grier, Mary Ann Odete, Fook Chiong Cheong, Annemarie Winters, Jesse J. Elliott, Laura A. Philips
  • Patent number: 11892390
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: February 6, 2024
    Assignee: New York University
    Inventors: David G. Grier, Fook Chiong Cheong, Ke Xiao
  • Patent number: 11747258
    Abstract: Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: September 5, 2023
    Assignee: New York University
    Inventors: David G. Grier, Michael D. Ward, Xiao Zhong, Chen Wang, Laura A. Philips, David B. Ruffner, Fook Chiong Cheong
  • Publication number: 20230213425
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 6, 2023
    Applicants: NEW YORK UNIVERSITY, SPHERYX, INC.
    Inventors: David G. GRIER, Mary Ann ODETE, Fook Chiong CHEONG, Annemarie WINTERS, Jesse J. ELLIOTT, Laura A. PHILIPS
  • Publication number: 20230137843
    Abstract: A holographic microscopy characterization (HMC) process for utilizing holographic video microscopy to provide an efficient, automated, label-free method of accurately identifying cell viability. Optical properties of a sample of cells are determined by HMC. The optical properties are compared to known samples or compared over time to observe changes in the optical properties, enabling identification of cells as viable or not viable, or as extra-cellular or degraded cellular materials.
    Type: Application
    Filed: October 28, 2022
    Publication date: May 4, 2023
    Applicant: SPHERYX, INC.
    Inventors: Mary Ann ODETE, Rostislav BOLTYANSKIY, Fook Chiong CHEONG, Laura A. PHILIPS
  • Patent number: 11543338
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 3, 2023
    Assignees: New York University, Spheryx, Inc.
    Inventors: David G. Grier, Mary Ann Odete, Fook Chiong Cheong, Annemarie Winters, Jesse J. Elliott, Laura A. Philips
  • Publication number: 20220326130
    Abstract: Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
    Type: Application
    Filed: May 27, 2022
    Publication date: October 13, 2022
    Applicant: NEW YORK UNIVERSITY
    Inventors: David G. Grier, Michael D. WARD, Xiao ZHONG, Chen WANG, Laura A. PHILIPS, David B. RUFFNER, Fook Chiong CHEONG
  • Patent number: 11385157
    Abstract: Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: July 12, 2022
    Assignee: New York University
    Inventors: David G. Grier, Michael D. Ward, Xiao Zhong, Chen Wang, Laura A. Philips, David B. Ruffner, Fook Chiong Cheong
  • Patent number: 11346761
    Abstract: Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: May 31, 2022
    Assignee: New York University
    Inventors: David G. Grier, Michael D. Ward, Xiao Zhong, Chen Wang, Laura A. Philips, David B. Ruffner, Fook Chiong Cheong
  • Publication number: 20210279876
    Abstract: An in-line holographic microscope can be used to analyze a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. An assay using the holographic microscope for holographic particle characterization directly detect viruses, antibodies and related targets binding to the surfaces of specifically functionalized micrometer-scale colloidal probe beads. The system detects binding of targets by directly measuring associated changes in the bead's diameter without the need for downstream labeling and analysis.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 9, 2021
    Inventors: David G. GRIER, Fook Chiong CHEONG, Kaitlynn SNYDER, Rushna QUADDUS, Lauren E. ALTMAN, Kent KIRSHENBAUM
  • Publication number: 20210199551
    Abstract: Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
    Type: Application
    Filed: February 7, 2017
    Publication date: July 1, 2021
    Inventors: David G. GRIER, Michael D. WARD, Xiao ZHONG, Chen WANG, Laura A. PHILIPS, David B. RUFFNER, Fook Chiong CHEONG
  • Publication number: 20210123848
    Abstract: Holographic Video Microscopy analysis of non-spherical particles is disclosed herein. Properties of the particles are determined by application of light scattering theory to holography data. Effective sphere theory is applied to provide information regarding the reflective index of a sphere that includes a target particle. Known particles may be co-dispersed with unknown particles in a medium and the holographic video microscopy is used to determine properties, such as porosity, of the unknown particles.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Inventors: David G. GRIER, Mary Ann ODETE, Fook Chiong CHEONG, Annemarie WINTERS, Jesse J. ELLIOTT, Laura A. PHILIPS
  • Publication number: 20200319086
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 8, 2020
    Applicant: NEW YORK UNIVERSITY
    Inventors: David G. GRIER, Fook Chiong CHEONG, Ke XIAO
  • Patent number: 10634604
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 28, 2020
    Assignee: NEW YORK UNIVERSITY
    Inventors: David G. Grier, Fook Chiong Cheong, Ke Xiao
  • Publication number: 20190234853
    Abstract: Holographic microscopy analysis system and methods for determining morphology of a particle in a sample. A bright-field reconstruction image is generated from a recorded hologram from a holographic microscopy system. Morphology of particles imaged by the system may be determined. Hu moments are calculated, either from the hologram or from the bright-field reconstruction, or both, to provide an indication of morphology.
    Type: Application
    Filed: August 24, 2017
    Publication date: August 1, 2019
    Inventors: David B. RUFFNER, Laura PHILIPS, Fook Chiong CHEONG
  • Patent number: 10234451
    Abstract: The disclosure relates to a method and device for detecting and quantifying biological molecules such as cell surface or intracellular ligands/receptors in a dynamic system with high sensitivity and specificity; the method of using such platform optionally in combination with an optical detection system and kits comprising the optical platform.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: March 19, 2019
    Assignee: National University of Singapore
    Inventors: Ramesh Ramji, Fook Chiong Cheong, Chwee Teck Lim
  • Patent number: 9989451
    Abstract: A method for analyzing porosity of a particle and a medium disposed in the porosity of the particle. A video-holographic microscope is provided to analyze interference patterns produced by providing a laser source to output a collimated beam, scattering the collimated beam off a particle and interacting with an unscattered beam to generate the interference pattern for analyzation to determine the refractive index of the particle and a medium disposed in the porosity of the particle to measure porosity and the medium.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: June 5, 2018
    Assignee: NEW YORK UNIVERSITY
    Inventors: Fook Chiong Cheong, Ke Xiao, David Pine, David G. Grier
  • Publication number: 20180011001
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 11, 2018
    Inventors: David G. GRIER, Fook Chiong CHEONG, Ke XIAO
  • Patent number: 9719911
    Abstract: An in-line holographic microscope can be used to analyze on a frame-by-frame basis a video stream to track individual colloidal particles' three-dimensional motions. The system and method can provide real time nanometer resolution, and simultaneously measure particle sizes and refractive indexes. Through a combination of applying a combination of Lorenz-Mie analysis with selected hardware and software methods, this analysis can be carried out in near real time. An efficient particle identification methodology automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 1, 2017
    Assignee: NEW YORK UNIVERSITY
    Inventors: David G. Grier, Fook Chiong Cheong, Ke Xiao