Patents by Inventor Francis L. Leard

Francis L. Leard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10870150
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 22, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200376553
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
    Type: Application
    Filed: November 19, 2019
    Publication date: December 3, 2020
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10843266
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 24, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10843265
    Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 24, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200164438
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10596626
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 24, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10583484
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 10, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene M. Berdichevsky
  • Patent number: 10518328
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: December 31, 2019
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene M. Berdichevsky
  • Publication number: 20180326664
    Abstract: A solid state beam routing apparatus includes a controller and a spatial angular light valve arranged to direct a two-dimensional patterned light beam through a predetermined angle in response to an applied voltage. A bed is arranged to receive the two-dimensional patterned light beam as a succession of tiles. In some embodiments, one or more solid state galvo mechanisms are used to direct the two-dimensional patterned light beams formed by the light valve to the multiple powder bed chambers.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: James A. DeMuth, Francis L. Leard, Erik Toomre
  • Publication number: 20180326663
    Abstract: A method and an apparatus for additive manufacturing pertaining to high efficiency, energy beam patterning and beam steering to effectively and efficiently utilize the source energy. In one embodiment recycling and reuse of unwanted light includes a source of multiple light patterns produced by one or more light valves, with at least one of the multiple light patterns being formed from rejected patterned light. An image relay is used to direct the multiple light patterns, and a beam routing system receives the multiple light patterns and respectively directs them toward defined areas on a powder bed.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: James A. DeMuth, Francis L. Leard, Erik Toomre
  • Patent number: 9921300
    Abstract: A time-of-flight (TOF) sensor device is provided that is capable of accurately recovering waveforms of reflected light pulses incident on the sensor's photo-receiver array using a low sampling rate. A number of samples for a received light pulse incident on a given photo-receiver are obtained by emitting a light pulse to the viewing field, integrating the electrical output generated by the photo receiver over an integration period, and adding the integral values for respective integration cycles to yield an accumulation value. This process is repeated for multiple accumulation cycles; however, for each consecutive accumulation cycle the start of the integration period is delayed relative the start time of the integration period for the previous cycle by a delay period. Sampled values for the waveform are obtained by determining the difference values between consecutive accumulation values for the respective accumulation cycles.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 20, 2018
    Assignees: Rockwell Automation Technologies, Inc., Innovaciones Microelectrónicas S.L.
    Inventors: Richard Galera, Anne Bowlby, Derek W. Jones, Nilesh Pradhan, Francis L. Leard, Rafael Dominguez Castro, Sergio Morillas Castillo, Rafael Romay Juárez
  • Patent number: 9696424
    Abstract: An imaging sensor device is configured to illuminate a viewing field using an array of focused light spots spaced across the viewing field rather than uniformly illuminating the viewing field, thereby reducing the amount of illumination energy required to produce a given intensity of light reflected from the spots. In some embodiments, the imaging sensor device can project an array of focused light spots at two different intensities or brightness levels, such that high intensity and low intensity light spots are interlaced across the viewing field. This ensures that both relatively dark and relatively bright or reflective objects can be reliably detected within the viewing field. The intensities of the light spots can be modulated based on measured conditions of the viewing field, including but not limited to the measured ambient light or a determined dynamic range of reflectivity of objects within the viewing field.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: July 4, 2017
    Assignee: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Richard Galera, Anne Bowlby, Derek W. Jones, Nilesh Pradhan, Francis L. Leard
  • Publication number: 20170144224
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 25, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120335
    Abstract: Additive manufacturing can involve dispensing a powdered material to form a layer of a powder bed on a support surface of a build platform.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120518
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene M. Berdichevsky
  • Publication number: 20170120334
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120529
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170123222
    Abstract: A method and an apparatus pertaining to polarization combining in additive manufacturing may involve emitting two or more beams of light with a first intensity. Each of the two or more beams of light may be polarized and may have a majority polarization state and a minority polarization state. A respective polarization pattern may be applied on the majority polarization state of each of the two or more beams of light. The two or more beams of light may be combined to provide a single beam of light.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120538
    Abstract: A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20170120387
    Abstract: A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky