Patents by Inventor Francis X. Bostick, III

Francis X. Bostick, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9841315
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 12, 2017
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, David LaBella, Mark Baker, Andrew S. Kuczma, Francis X. Bostick, III
  • Publication number: 20160116331
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Inventors: Domino TAVERNER, John J. GRUNBECK, James R. DUNPHY, Edward M. DOWD, David ABELLA, Mark BAKER, Andrew S. KUCZMA, Francis X. BOSTICK, III
  • Patent number: 9255836
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 9, 2016
    Assignee: WEATHERFORD TECHNOLOGY HOLDINGS, LLC
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, Andrew S. Kuczma, Francis X. Bostick, III, David Labella, Mark Baker
  • Patent number: 8848485
    Abstract: Methods and apparatus for performing sonic well logging within a wellbore based on optical Distributed Acoustic Sensing (DAS) are provided. A sonic well logging system based on DAS may be capable of producing the functional equivalent of tens, hundreds, or even thousands of acoustic sensors. In this manner, the emplacement of the sonic well logging system based on DAS may not be nearly as complex or expensive as emplacing a sonic well logging system based on traditional methods. Furthermore, multiplexing may be simpler, downhole electronics need not be used, and the sonic well logging system may be used in extreme, high temperature environments.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 30, 2014
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Francis X. Bostick, III
  • Patent number: 8496053
    Abstract: A method and apparatus for preventing erosion of a cable for use in a wellbore is described herein. The cable has one or more optical fibers adapted to monitor and/or control a condition in the wellbore. The cable includes a layer of elastomeric material at least partially located on an outer surface of the cable. The elastomeric material is adapted to absorb energy due to the impact of particles in production fluid or wellbore fluid against the cable.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 30, 2013
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Jeffrey J. Lembcke, Francis X. Bostick, III
  • Publication number: 20120111104
    Abstract: Methods and apparatus for performing Distributed Acoustic Sensing (DAS) using fiber optics with increased acoustic sensitivity are provided. Acoustic sensing of a wellbore, pipeline, or other conduit/tube based on DAS may have increased acoustic sensitivity through fiber optic cable design and/or increasing the Rayleigh backscatter property of a fiber's optical core. Some embodiments may utilize a resonant sensor mechanism with a high Q coupled to the DAS device for increased acoustic sensitivity.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 10, 2012
    Inventors: Domino Taverner, John J. Grunbeck, James R. Dunphy, Edward M. Dowd, Andrew S. Kuczma, Francis X. Bostick, III, David Labella, Mark Baker
  • Publication number: 20120092960
    Abstract: Methods and systems are provided for performing acoustic sensing by utilizing distributed acoustic sensing (DAS) along a length of a conduit, such that the sensing is performed with the functional equivalent of tens, hundreds, or thousands of sensors. Utilizing DAS in this manner may cut down the time in performing acoustic sensing, which, therefore, may make acoustic sensing more practical and cost effective and may enable applications that were previously cost prohibitive with discrete acoustic sensors.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Inventors: GRAHAM GASTON, Francis X. Bostick, III, Brian K. Drakeley
  • Publication number: 20110280103
    Abstract: Methods and apparatus for performing sonic well logging within a wellbore based on optical Distributed Acoustic Sensing (DAS) are provided. A sonic well logging system based on DAS may be capable of producing the functional equivalent of tens, hundreds, or even thousands of acoustic sensors. In this manner, the emplacement of the sonic well logging system based on DAS may not be nearly as complex or expensive as emplacing a sonic well logging system based on traditional methods. Furthermore, multiplexing may be simpler, downhole electronics need not be used, and the sonic well logging system may be used in extreme, high temperature environments.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 17, 2011
    Inventor: Francis X. Bostick, III
  • Patent number: 8020436
    Abstract: Embodiments of the present invention include a fiber optic seismic sensing system for permanent downhole installation. In one aspect, the present invention includes a multi-station, multi-component system for conducting seismic reservoir imaging and monitoring in a well. Permanent seismic surveys may be conducted with embodiments of the present invention, including time-lapse (4D) vertical seismic profiling (VSP) and extended micro-seismic monitoring. Embodiments of the present invention provide the ability to map fluid contacts in the reservoir using 4D VSP and to correlate micro-seismic events to gas injection and production activity.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 20, 2011
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Francis X. Bostick, III
  • Patent number: 7997340
    Abstract: The present invention involves methods and apparatus for permanent downhole deployment of optical sensors. Specifically, optical sensors may be permanently deployed within a wellbore using a casing string. In one aspect, one or more optical sensors are disposed on, in, or within the casing string. The optical sensors may be attached to an outer surface of the casing string or to an inner surface of the casing string, as well as embedded within a wall of the casing string. The optical sensors are capable of measuring wellbore parameters during wellbore operations, including completion, production, and intervention operations.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 16, 2011
    Assignee: Weatherford/LAMB, Inc.
    Inventors: Francis X. Bostick, III, David G. Hosie, Michael Brian Grayson, Ram K. Bansal
  • Patent number: 7797996
    Abstract: Embodiments of the present invention include a fiber optic seismic sensing system for permanent downhole installation. In one aspect, the present invention includes a multi-station, multi-component system for conducting seismic reservoir imaging and monitoring in a well. Permanent seismic surveys may be conducted with embodiments of the present invention, including time-lapse (4D) vertical seismic profiling (VSP) and extended micro-seismic monitoring. Embodiments of the present invention provide the ability to map fluid contacts in the reservoir using 4D VSP and to correlate micro-seismic events to gas injection and production activity.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: September 21, 2010
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Francis X. Bostick, III
  • Publication number: 20100078164
    Abstract: The present invention involves methods and apparatus for permanent downhole deployment of optical sensors. Specifically, optical sensors may be permanently deployed within a wellbore using a casing string. In one aspect, one or more optical sensors are disposed on, in, or within the casing string. The optical sensors may be attached to an outer surface of the casing string or to an inner surface of the casing string, as well as embedded within a wall of the casing string. The optical sensors are capable of measuring wellbore parameters during wellbore operations, including completion, production, and intervention operations.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 1, 2010
    Inventors: FRANCIS X. BOSTICK, III, David G. Hosie, Michael Brian Grayson, Ram K. Bansal
  • Patent number: 7665543
    Abstract: The present invention involves methods and apparatus for permanent downhole deployment of optical sensors. Specifically, optical sensors may be permanently deployed within a wellbore using a casing string. In one aspect, one or more optical sensors are disposed on, in, or within the casing string. The optical sensors may be attached to an outer surface of the casing string or to an inner surface of the casing string, as well as embedded within a wall of the casing string. The optical sensors are capable of measuring wellbore parameters during wellbore operations, including completion, production, and intervention operations.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: February 23, 2010
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Francis X. Bostick, III, David G. Hosie, Michael Brian Grayson, Ram K. Bansal
  • Publication number: 20100018303
    Abstract: Embodiments of the present invention include a fiber optic seismic sensing system for permanent downhole installation. In one aspect, the present invention includes a multi-station, multi-component system for conducting seismic reservoir imaging and monitoring in a well. Permanent seismic surveys may be conducted with embodiments of the present invention, including time-lapse (4D) vertical seismic profiling (VSP) and extended micro-seismic monitoring. Embodiments of the present invention provide the ability to map fluid contacts in the reservoir using 4D VSP and to correlate micro-seismic events to gas injection and production activity.
    Type: Application
    Filed: October 5, 2009
    Publication date: January 28, 2010
    Inventor: FRANCIS X. BOSTICK, III
  • Patent number: 7475732
    Abstract: The present generally relates to apparatus and methods for instrumentation associated with a downhole deployment valve or a separate instrumentation sub. In one aspect, a DDV in a casing string is closed in order to isolate an upper section of a wellbore from a lower section. Thereafter, a pressure differential above and below the closed valve is measured by downhole instrumentation to facilitate the opening of the valve. In another aspect, the instrumentation in the DDV includes sensors placed above and below a flapper portion of the valve. The pressure differential is communicated to the surface of the well for use in determining what amount of pressurization is needed in the upper portion to safely and effectively open the valve. Additionally, instrumentation associated with the DDV can include pressure, temperature, seismic, acoustic, and proximity sensors to facilitate the use of not only the DDV but also telemetry tools.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: January 13, 2009
    Assignee: Weatherford/Lamb, Inc.
    Inventors: David G. Hosie, Michael Brian Grayson, Ramkumar K. Bansal, Francis X. Bostick, III
  • Patent number: 7254999
    Abstract: Embodiments of the present invention include a fiber optic seismic sensing system for permanent downhole installation. In one aspect, the present invention includes a multi-station, multi-component system for conducting seismic reservoir imaging and monitoring in a well. Permanent seismic surveys may be conducted with embodiments of the present invention, including time-lapse (4D) vertical seismic profiling (VSP) and extended micro-seismic monitoring. Embodiments of the present invention provide the ability to map fluid contacts in the reservoir using 4D VSP and to correlate micro-seismic events to gas injection and production activity.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: August 14, 2007
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Francis X. Bostick, III
  • Patent number: 7255173
    Abstract: The present generally relates to apparatus and methods for instrumentation associated with a downhole deployment valve or a separate instrumentation sub. In one aspect, a DDV in a casing string is closed in order to isolate an upper section of a wellbore from a lower section. Thereafter, a pressure differential above and below the closed valve is measured by downhole instrumentation to facilitate the opening of the valve. In another aspect, the instrumentation in the DDV includes sensors placed above and below a flapper portion of the valve. The pressure differential is communicated to the surface of the well for use in determining what amount of pressurization is needed in the upper portion to safely and effectively open the valve. Additionally, instrumentation associated with the DDV can include pressure, temperature, seismic, acoustic, and proximity sensors to facilitate the use of not only the DDV but also telemetry tools.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 14, 2007
    Assignee: Weatherford/Lamb, Inc.
    Inventors: David G. Hosie, Michael Brian Grayson, Ramkumar K. Bansal, Francis X. Bostick, III
  • Patent number: 6986389
    Abstract: The present invention generally relates to an apparatus and method for seismic monitoring. In one aspect, an apparatus for acoustically coupling a sensor mechanism to a surface in a wellbore is provided. The apparatus includes a mandrel disposable in a tubing string. The apparatus further includes a carrier member disposed on the mandrel, the carrier member axially adjustable relative to the mandrel. The apparatus also includes at least one sensor mounted on the carrier member, the at least one sensor connected to the surface of the well via a cable line and a deployment assembly disposed on the carrier member for coupling the at least one sensor to the surface of the well. In another aspect, a method for acoustically coupling a sensor mechanism to a surface of a wellbore is provided.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: January 17, 2006
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Michael Foster, Francis X. Bostick, III, Robert Coon, Kevin S. Kippola, Sverre Knudsen, Arne Berg