Patents by Inventor Francois Moreau

Francois Moreau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091745
    Abstract: A composite oxidation catalyst for use in an exhaust system for treating an exhaust gas produced by a vehicular compression ignition internal combustion engine is disclosed. The composite oxidation catalyst comprises a honeycomb flow-through substrate monolith and two catalyst washcoat zones arranged axially in series on and along the substrate surface.
    Type: Application
    Filed: October 25, 2023
    Publication date: March 21, 2024
    Inventors: Andrew CHIFFEY, Kieran COLE, Oliver COOPER, Christopher DALY, Lee GILBERT, Robert HANLEY, David MICALLEF, Francois MOREAU, Paul PHILLIPS, George PLATT
  • Publication number: 20240011421
    Abstract: A system comprising (i) a vehicular compression ignition engine comprising one or more engine cylinders and one or more electronically-controlled fuel injectors therefor; (ii) an exhaust line for the engine comprising: a first emissions control device comprising a first honeycomb substrate, which comprises a hydrocarbon adsorbent component; and a second emissions control device comprising an electrically heatable element and a catalysed second honeycomb substrate, which comprises a rhodium-free platinum group metal comprising platinum, wherein the electrically heatable element is disposed upstream from the catalysed second honeycomb substrate and wherein both the electrically heatable element and the catalysed second honeycomb substrate are disposed downstream from the first honeycomb substrate; a third emissions control device, which is a third honeycomb substrate comprising an ammonia-selective catalytic reduction catalyst disposed downstream from the second emissions control device; and one or more tempera
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: David BERGEAL, Andrew CHIFFEY, Daniel HATCHER, Francois MOREAU, Paul PHILLIPS
  • Patent number: 11845064
    Abstract: A composite oxidation catalyst (18, 20) for use in an exhaust system for treating an exhaust gas produced by a vehicular compression ignition internal combustion engine (30) and upstream of a particulate matter filter (44, 50) in the exhaust system comprises a substrate (5) having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); and three or more catalyst washcoat zones (1, 2, 3; or 1, 2, 3, 4) arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1, wherein L1<L, is defined at one end by the first substrate end (I) and at a second end by a first end (19, 21) of a second catalyst washcoat zone (2) having a length L2, wherein L2<L, wherein the first catalyst washcoat zone (1) comprises a first refractory metal oxide support material and two or more platinum group metal components supported thereon comprising both platinum and palla
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: December 19, 2023
    Inventors: Andrew Chiffey, Kieran John Cole, Oliver Cooper, Christopher Daly, Lee Gilbert, Robert Hanley, David Micallef, Francois Moreau, Paul Phillips, George Platt
  • Patent number: 11808190
    Abstract: A system (2) comprising (i) a vehicular compression ignition engine (1) comprising one or more engine cylinders and one or more electronically-controlled fuel injectors therefor; (ii) an exhaust line (3) for the engine comprising: a first emissions control device (5) comprising a first honeycomb substrate, which comprises a hydrocarbon adsorbent component; and a second emissions control device (7) comprising an electrically heatable element (7a) and a catalysed second honeycomb substrate (7b), which comprises a rhodium-free platinum group metal (PGM) comprising platinum, wherein the electrically heatable element (7a) is disposed upstream from the catalysed second honeycomb substrate (7b) and wherein both the electrically heatable element (7a) and the catalysed second honeycomb substrate (7b) are disposed downstream from the first honeycomb substrate; a third emissions control device (22), which is a third honeycomb substrate comprising an ammonia-selective catalytic reduction catalyst disposed downstream from
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: November 7, 2023
    Inventors: David Bergeal, Andrew Chiffey, Daniel Hatcher, Francois Moreau, Paul Phillips
  • Patent number: 11794169
    Abstract: An oxidation catalyst for treating an exhaust gas from a compression ignition engine, which oxidation catalyst comprises: a substrate; a first washcoat region comprising palladium (Pd) and a first support material comprising cerium oxide; and a second washcoat region comprising platinum (Pt) and a second support material.
    Type: Grant
    Filed: February 23, 2020
    Date of Patent: October 24, 2023
    Inventors: Andrew Francis Chiffey, Neil Robert Collins, John Benjamin Goodwin, Francois Moreau, Paul Richard Phillips
  • Patent number: 11759770
    Abstract: A passive NOx absorber for treating an exhaust gas from a diesel engine is described. The passive NOx absorber comprises a first washcoat region comprising a zeolite catalyst, the zeolite catalyst comprising a noble metal and a zeolite having a SAR of 2-15.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: September 19, 2023
    Inventors: Jillian Collier, Francois Moreau, Matthew O'Brien, Paul Richard Phillips, Sanyuan Yang
  • Publication number: 20230278018
    Abstract: A compression ignition internal combustion engine (30) for a heavy-duty diesel vehicle comprising an exhaust system (32) comprising a composite oxidation catalyst (12, 42) and a soot filter substrate (44, 50) disposed downstream from the composite oxidation catalyst comprising: a substrate (5), preferably a honeycomb flow-through substrate monolith, having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); two catalyst washcoat zones (1, 2) arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1 and comprising a first catalyst washcoat layer (9), wherein L1<L, is defined at one end by the first substrate end (I) and at a second end by a first end (15) of a second catalyst washcoat zone (2) having a length L2 and comprising a second catalyst washcoat layer (11), wherein L2<L, wherein the second catalyst washcoat zone (2) is defined a
    Type: Application
    Filed: October 13, 2020
    Publication date: September 7, 2023
    Inventors: Andrew Francis CHIFFEY, Kieran COLE, Oliver COOPER, Christopher DALY, Lee Alexander GILBERT, Robert HANLEY, David MICALLEF, Francois MOREAU, Paul PHILLIPS, George PLATT
  • Publication number: 20230211323
    Abstract: A composite, zone-coated, dual-use ammonia (AMOX) and nitric oxide oxidation catalyst (12) comprises: a substrate (5) having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); two or more catalyst washcoat zones (1; 2) comprised of a first catalyst washcoat layer (9) comprising a refractory metal oxide support material and one or more platinum group metal components supported thereon and a second catalyst washcoat layer (11) different from the first catalyst washcoat layer (9) and comprising a refractory metal oxide support material and one or more platinum group metal components supported thereon, which two or more catalyst washcoat zones (1; 2) being arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1, wherein L1<L, is defined at one end by the first substrate end (I) and at a second end (13) by a first end (15) of a second catal
    Type: Application
    Filed: October 16, 2020
    Publication date: July 6, 2023
    Inventors: Andrew Francis CHIFFEY, Kieran COLE, Oliver COOPER, Christopher DALY, Jonas EDVARDSSON, Lee GILLBERT, Alexander GREEN, Neil GREENHAM, Robert HANLEY, Caitlin Lucy JENKINS, Per MARSH, David MICALLEF, Francois MOREAU, George PLATT, Paul Richard PHILLIPS, James WYLIE
  • Publication number: 20230104565
    Abstract: A layered diesel oxidation catalyst for treatment of exhaust gas emissions from a diesel engine comprising: a flow-through monolith substrate having a honeycomb structure and comprising a front zone and a rear zone, wherein the front zone of the substrate comprises a combination of layers, one on top of another and comprising two or more of layers A, B and C; and the rear zone comprises Layer D, wherein: Layer A comprises platinum, palladium, or combinations thereof on a molecular sieve; Layer B comprises 1) platinum, palladium, or combinations thereof on a refractory metal oxide support; and 2) an alkaline earth metal, preferably barium, strontium or combinations thereof; Layer C comprises 1) a platinum group metal, which is platinum or a combination of both platinum and palladium on a refractory metal oxide support; and 2) a promoter metal, which is manganese and/or bismuth; and layer D comprises 1) platinum or a combination of both platinum and palladium on a refractory metal oxide support; and 2) manganes
    Type: Application
    Filed: March 30, 2021
    Publication date: April 6, 2023
    Inventors: Andrew CHIFFEY, Kieran COLE, Amelie DURAUD, Kamila GOLDYN, Francois MOREAU, Matthew O'BRIEN
  • Publication number: 20230067575
    Abstract: The disclosure relates to a method of forming a coated monolith article for the treatment of an exhaust gas. The method comprises the steps of: retaining a porous monolith article in a coating apparatus, the porous monolith article comprising a plurality of channels for the passage of an exhaust gas, each channel having a gas-contacting surface; depositing cementitious particles as a dry powder onto the gas-contacting surface of at least some of the channels; and reacting the cementitious particles with a liquid or gaseous reagent in situ within the porous monolith article to provide the coated monolith article.
    Type: Application
    Filed: August 3, 2022
    Publication date: March 2, 2023
    Inventors: Kaneshalingam ARULRAJ, Peter BELLHAM, Guy Richard CHANDLER, Andrew CHIFFEY, Kieran COLE, Chris CORRIGAN, David MARVELL, Francois MOREAU, John TURNER
  • Publication number: 20220339613
    Abstract: A passive NOx absorber for treating an exhaust gas from a diesel engine is described. The passive NOx absorber comprises a first washcoat region comprising a zeolite catalyst, the zeolite catalyst comprising a noble metal and a zeolite having a SAR of 2-15.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 27, 2022
    Inventors: Jillian Collier, Francois Moreau, Matthew O'Brien, Paul Richard Phillips, Sanyuan Yang
  • Publication number: 20220282650
    Abstract: A system (2) comprising (i) a vehicular compression ignition engine (1) comprising one or more engine cylinders and one or more electronically-controlled fuel injectors therefor; (ii) an exhaust line (3) for the engine comprising: a first emissions control device (5) comprising a first honeycomb substrate, which comprises a hydrocarbon adsorbent component; and a second emissions control device (7) comprising an electrically heatable element (7a) and a catalysed second honeycomb substrate (7b), which comprises a rhodium-free platinum group metal (PGM) comprising platinum, wherein the electrically heatable element (7a) is disposed upstream from the catalysed second honeycomb substrate (7b) and wherein both the electrically heatable element (7a) and the catalysed second honeycomb substrate (7b) are disposed downstream from the first honeycomb substrate; a third emissions control device (22), which is a third honeycomb substrate comprising an ammonia-selective catalytic reduction catalyst disposed downstream from
    Type: Application
    Filed: August 4, 2020
    Publication date: September 8, 2022
    Inventors: David BERGEAL, Andrew CHIFFEY, Daniel HATCHER, Francois MOREAU, Paul PHILLIPS
  • Patent number: 11359530
    Abstract: An exhaust system for treating an exhaust gas produced by a lean burn engine comprising: (i) a NOx absorber catalyst comprising a molecular sieve catalyst disposed on a substrate, wherein the molecular sieve catalyst comprises a noble metal and a molecular sieve, wherein the molecular sieve contains the noble metal; (ii) means for introducing hydrocarbons into the exhaust gas; and (iii) a lean NOx trap; wherein the NOx absorber catalyst is upstream of both the means for introducing hydrocarbons into the exhaust gas and the lean NOx trap.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: June 14, 2022
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Gavin Brown, Andrew Francis Chiffey, Francois Moreau, Matthew O'Brien
  • Patent number: 11338245
    Abstract: An oxidation catalyst for treating an exhaust gas from a diesel engine, which oxidation catalyst comprises: a first washcoat region comprising platinum (Pt), manganese (Mn) and a first support material; a second washcoat region comprising a platinum group metal (PGM) and a second support material; and a substrate having an inlet end and an outlet end; wherein the second washcoat region is arranged to contact the exhaust gas at the outlet end of the substrate and after contact of the exhaust gas with the first washcoat region.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 24, 2022
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, John Benjamin Goodwin, James Leeland, Francois Moreau
  • Publication number: 20220152589
    Abstract: A composite oxidation catalyst (18, 20) for use in an exhaust system for treating an exhaust gas produced by a vehicular compression ignition internal combustion engine (30) and upstream of a particulate matter filter (44, 50) in the exhaust system comprises a substrate (5) having a total length L and a longitudinal axis and having a substrate surface extending axially between a first substrate end (I) and a second substrate end (O); and three or more catalyst washcoat zones (1, 2, 3; or 1, 2, 3, 4) arranged axially in series on and along the substrate surface, wherein a first catalyst washcoat zone (1) having a length L1, wherein L1<L, is defined at one end by the first substrate end (I) and at a second end by a first end (19, 21) of a second catalyst washcoat zone (2) having a length L2, wherein L2<L, wherein the first catalyst washcoat zone (1) comprises a first refractory metal oxide support material and two or more platinum group metal components supported thereon comprising both platinum and palla
    Type: Application
    Filed: June 26, 2020
    Publication date: May 19, 2022
    Inventors: Andrew CHIFFEY, Kieran John COLE, Oliver COOPER, Christopher DALY, Lee GILBERT, Robert HANLEY, David MICALLEF, Francois MOREAU, Paul PHILLIPS, George PLATT
  • Patent number: 11167246
    Abstract: An oxidation catalyst for treating an exhaust gas from a diesel engine comprises: a first washcoat region for oxidising carbon monoxide (CO) and hydrocarbons (HCs), wherein the first washcoat region comprises a first platinum group metal (PGM) and a first support material, and wherein the first washcoat region does not comprise manganese or an oxide thereof; a second washcoat region for oxidising nitric oxide (NO), wherein the second washcoat region comprises platinum (Pt), manganese (Mn) and a second support material comprising a refractory metal oxide, which is silica-alumina or alumina doped with silica in a total amount of 0.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: November 9, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, John Benjamin Goodwin, James Leeland, Francois Moreau
  • Patent number: 11103858
    Abstract: A NOx absorber catalyst for treating an exhaust gas from a lean burn engine. The NOx absorber catalyst comprises a molecular sieve catalyst comprising a noble metal and a molecular sieve, wherein the molecular sieve contains the noble metal; an oxygen storage material for protecting the molecular sieve catalyst; and a substrate having an inlet end and an outlet end.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 31, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, Jack Corps, Laura Mitchell-Downie, Francois Moreau, Matthew O'Brien
  • Patent number: 11103855
    Abstract: A method of preparing a catalyst composition for producing a stable ratio of NO2 to NO in an exhaust system of a compression ignition engine is described. The method comprises: (i) preparing a first composition comprising a platinum (Pt) compound disposed or supported on a support material; (ii) preparing a second composition by reducing the platinum (Pt) compound to platinum (Pt) with a reducing agent; and (iii) heating the second composition to at least 650° C.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: August 31, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, Daniel Hatcher, Francois Moreau, Paul Richard Phillips, Freyja Woods
  • Patent number: 10981544
    Abstract: A wiper assembly (100) is provided, comprising a wiper arm (110), a wiper blade (120), and a coupling device (130) configured to enable connection of the wiper blade (120) to the wiper arm (110), wherein the coupling device (130) comprises a first part (140) being connected to one of said wiper arm (110) or said wiper blade (120), and a second part (150) being connected to the other one of said wiper arm (110) or said wiper blade (120).
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 20, 2021
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Sara Engdal, Francois Moreau
  • Patent number: 10975745
    Abstract: A NOx absorber catalyst for treating an exhaust gas from a diesel engine. The NOx absorber catalyst comprises a first NOx absorber material comprising a molecular sieve catalyst, wherein the molecular sieve catalyst comprises a noble metal and a molecular sieve, and wherein the molecular sieve contains the noble metal; a second NOx absorber material comprising palladium (Pd) supported on an oxide of cerium; and a substrate having an inlet end and an outlet end.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: April 13, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, Jack Corps, Laura Mitchell-Downie, Francois Moreau, Matthew O'Brien