Patents by Inventor Francoise Marga

Francoise Marga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707077
    Abstract: Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: July 25, 2023
    Assignee: The Curators of the University of Missouri
    Inventors: Gabor Forgacs, Francoise Marga, Karoly Robert Jakab
  • Patent number: 8747880
    Abstract: An engineered three-dimensional structure includes living cells cohered with each other. The living cells suitably include Schwann cells and at least one other type of cell. The cells accompanying the Schwann cells can suitably be bone marrow stem cells or another type of cell having one or more anti-inflammatory properties. The structure is suitably a graft that facilitates restorative axon growth when the graft is implanted between the proximal and distal stubs of a severed nerve in a living organism. The graft can optionally include a plurality of acellular conduits extending between opposite axial ends of the graft. Bio-printing techniques can be used to assemble a three-dimensional construct that becomes through maturation an axon-guiding graft, by stacking a plurality of multicellular bodies, each of which includes a plurality of living cells cohered to one another to sufficiently to avoid collapsing when the multicellular bodies are stacked to form the structure.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: June 10, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Gabor Forgacs, Stephen H. Colbert, Bradley A. Hubbard, Francoise Marga, Dustin Christiansen
  • Patent number: 8703216
    Abstract: Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 22, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Gabor Forgacs, Francoise Marga, Karoly Robert Jakab
  • Publication number: 20140093618
    Abstract: Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
    Type: Application
    Filed: November 27, 2013
    Publication date: April 3, 2014
    Applicant: The Curators Of the University of Missouri
    Inventors: Gabor FORGACS, Francoise MARGA, Karoly Robert JAKAB
  • Publication number: 20130029008
    Abstract: Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: The Curators of the University of Missouri
    Inventors: Gabor FORGACS, Francoise MARGA, Karoly Robert JAKAB
  • Publication number: 20110313542
    Abstract: An engineered three-dimensional structure includes living cells cohered with each other. The living cells suitably include Schwann cells and at least one other type of cell. The cells accompanying the Schwann cells can suitably be bone marrow stem cells or another type of cell having one or more anti-inflammatory properties. The structure is suitably a graft that facilitates restorative axon growth when the graft is implanted between the proximal and distal stubs of a severed nerve in a living organism. The graft can optionally include a plurality of acellular conduits extending between opposite axial ends of the graft. Bio-printing techniques can be used to assemble a three-dimensional construct that becomes through maturation an axon-guiding graft, by stacking a plurality of multicellular bodies, each of which includes a plurality of living cells cohered to one another to sufficiently to avoid collapsing when the multicellular bodies are stacked to form the structure.
    Type: Application
    Filed: February 2, 2011
    Publication date: December 22, 2011
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Gabor Forgacs, Stephen H. Colbert, Bradley A. Hubbard, Francoise Marga, Dustin Christiansen