Patents by Inventor Frank Cheng-Yu Wang

Frank Cheng-Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939543
    Abstract: In an embodiment, a method for decreasing reactor fouling in a steam cracking process is provided. The method includes steam cracking a hydrocarbon feed to obtain a quench oil composition comprising a concentration of donatable hydrogen of 0.5 wt. % or more based on a total weight percent of the quench oil composition; exposing a steam cracker effluent flowing from a pyrolysis furnace to the quench oil composition to form a mixture; and fractionating the mixture in a separation apparatus to obtain a steam cracker tar. In another embodiment, a hydrocarbon mixture is provided. The hydrocarbon mixture includes a mid-cut composition.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, James R. Lattner, Frank Cheng-Yu Wang, Bryan Tiedemann, Renyuan Yu
  • Publication number: 20230174876
    Abstract: Hydrocarbon-containing fluids are provided for use during solvent-assisted hydroprocessing of pyrolysis tar, such as steam cracker tar. The hydrocarbon-containing fluids can be used at any convenient time, such as during start-up of a pyrolysis process when recycled liquid pyrolysis product is not available; when the amount of liquid pyrolysis product available for recycle is not sufficient to maintain desired hydroprocessing conditions; and/or when the changes to the quality of the liquid pyrolysis product reduce the suitability of the recycle stream for use as a utility fluid.
    Type: Application
    Filed: May 5, 2021
    Publication date: June 8, 2023
    Inventors: Maryam Peer Lachegurabi, Krystle J. Emanuele, Kapil Kandel, Frank Cheng-Yu Wang, Teng Xu
  • Patent number: 11401473
    Abstract: Processes for improving hydrocarbon feedstock compatibility are provided. More specifically, a process for preparing a liquid hydrocarbon product includes heat soaking a tar stream to produce a reduced reactivity tar and blending the reduced reactivity tar with a utility fluid comprising recycle solvent to produce a lower viscosity, reduced reactivity tar. The process also includes hydroprocessing the lower viscosity, reduced reactivity tar at a temperature of greater than 350° C. to produce a total liquids product containing the liquid hydrocarbon product and the recycle solvent. The process further includes separating the recycle solvent from the total liquids product, where the recycle solvent has the SBN of greater than 110, and flowing the recycle solvent to the reduced reactivity tar for blending to produce the lower viscosity, reduced reactivity tar.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: August 2, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Teng Xu, Glenn A. Heeter, Frank Cheng-Yu Wang, Anthony S. Mennito, David T. Ferrughelli, Krystle J. Emanuele
  • Patent number: 11286428
    Abstract: Processes for preparing a low particulate liquid hydrocarbon product are provided and include blending a tar stream containing particles with a fluid and heating to a temperature of 250° C. or greater to produce a fluid-feed mixture that contains tar, the particles, and the fluid. The fluid-feed mixture contains about 20 wt % or greater of the fluid, based on a combined weight of the tar stream and the fluid. Also, about 25 wt % to about 99 wt % of the particles in the tar stream are dissolved or decomposed when producing the fluid-feed mixture.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Teng Xu, John S. Coleman, Krystle J. Emanuele, Frank Cheng-Yu Wang, Anthony S. Mennito
  • Publication number: 20210348064
    Abstract: Processes for preparing a low particulate liquid hydrocarbon product are provided and include blending a tar stream containing particles with a fluid and heating to a temperature of 250° C. or greater to produce a fluid-feed mixture that contains tar, the particles, and the fluid. The fluid-feed mixture contains about 20 wt % or greater of the fluid, based on a combined weight of the tar stream and the fluid. Also, about 25 wt % to about 99 wt % of the particles in the tar stream are dissolved or decomposed when producing the fluid-feed mixture.
    Type: Application
    Filed: October 18, 2019
    Publication date: November 11, 2021
    Inventors: Kapil Kandel, Teng Xu, John S. Coleman, Krystle J. Emanuele, Frank Cheng-Yu Wang, Anthony S. Mennito
  • Publication number: 20210324276
    Abstract: In an embodiment, a method for decreasing reactor fouling in a steam cracking process is provided. The method includes steam cracking a hydrocarbon feed to obtain a quench oil composition comprising a concentration of donatable hydrogen of 0.5 wt. % or more based on a total weight percent of the quench oil composition; exposing a steam cracker effluent flowing from a pyrolysis furnace to the quench oil composition to form a mixture; and fractionating the mixture in a separation apparatus to obtain a steam cracker tar. In another embodiment, a hydrocarbon mixture is provided. The hydrocarbon mixture includes a mid-cut composition.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 21, 2021
    Inventors: Teng Xu, James R. Lattner, Frank Cheng-Yu Wang, Bryan Tiedemann, Renyuan Yu
  • Patent number: 10597592
    Abstract: A process is described for upgrading pyrolysis tar, such as steam cracker tar, by hydroprocessing in the presence of a utility fluid. The hydroprocessing conditions comprise a pressure >8 MPa and a weight hourly space velocity of combined pyrolysis tar and utility fluid >0.3 hr?1 and are selected so that the hydrogen consumption rate is in the range of 270 to 445 standard cubic meters/cubic meter (S m3/m3) of pyrolysis tar.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: March 24, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Reyyan Koc-Karabocek, Teng Xu, Frank Cheng-Yu Wang, David Thomas Ferrughelli
  • Publication number: 20200071626
    Abstract: Processes for improving hydrocarbon feedstock compatibility are provided. More specifically, a process for preparing a liquid hydrocarbon product includes heat soaking a tar stream to produce a reduced reactivity tar and blending the reduced reactivity tar with a utility fluid comprising recycle solvent to produce a lower viscosity, reduced reactivity tar. The process also includes hydroprocessing the lower viscosity, reduced reactivity tar at a temperature of greater than 350° C. to produce a total liquids product containing the liquid hydrocarbon product and the recycle solvent. The process further includes separating the recycle solvent from the total liquids product, where the recycle solvent has the SBN of greater than 110, and flowing the recycle solvent to the reduced reactivity tar for blending to produce the lower viscosity, reduced reactivity tar.
    Type: Application
    Filed: August 20, 2019
    Publication date: March 5, 2020
    Inventors: Kapil Kandel, Teng Xu, Glenn A. Heeter, Frank Cheng-Yu Wang, Anthony S. Mennito, David T. Ferrughelli, Krystle J. Emanuele
  • Publication number: 20180143168
    Abstract: Methods to generate a model of composition for a petroleum sample can include providing a petroleum sample to a two-dimensional gas chromatograph coupled with at least one detector. The chromatograph can have first and second columns. The chromatograph can be adapted to output data for each detector representing first and second dimension retention times corresponding to the first and second columns, respectively. The data representing the first and second dimension retention times for each detector based on the petroleum sample can be obtained from the chromatograph. Molecular components of the petroleum sample can be identified based at least in part on the first and second dimension retention times for each detector. The identified molecular components of the petroleum sample can be quantified based at least in part on integrated peaks of the first and second dimension retention times for each detector to generate a model of composition of the petroleum sample.
    Type: Application
    Filed: October 3, 2017
    Publication date: May 24, 2018
    Inventors: Frank Cheng-Yu Wang, Changyub Paek, Kuangnan Qian, Francis X. Kelly
  • Publication number: 20180057759
    Abstract: A process is described for upgrading pyrolysis tar, such as steam cracker tar, by hydroprocessing in the presence of a utility fluid. The hydroprocessing conditions comprise a pressure >8 MPa and a weight hourly space velocity of combined pyrolysis tar and utility fluid >0.3 hr?1 and are selected so that the hydrogen consumption rate is in the range of 270 to 445 standard cubic meters/cubic meter (S m3/m3) of pyrolysis tar.
    Type: Application
    Filed: August 2, 2017
    Publication date: March 1, 2018
    Inventors: Kapil Kandel, Reyyan Koc-Karabocek, Teng Xu, Frank Cheng-Yu Wang, David Thomas Ferrughelli
  • Patent number: 9737846
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. Leta, Preeti Kamakoti, Peter Ravikovitch, Joshua Varon, Tilman Wolfram Beutel, Karl Gottlieb Strohmaier, Ivy Dawn Johnson, Harry W. Deckman, Frank Cheng-Yu Wang, Charanjit Singh Paur
  • Patent number: 9574138
    Abstract: Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: February 21, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Virginia M. Roberts, Paul D. Oldenburg, Suzzy Chen Hsi Ho, Michel Daage, Frank Cheng-Yu Wang
  • Publication number: 20160175759
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 23, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. LETA, Preeti KAMAKOTI, Peter RAVIKOVITCH, Joshua VARON, Tilman Wolfram BEUTEL, Karl Gottlieb STROHMAIER, Ivy Dawn JOHNSON, Harry W. DECKMAN, Frank Cheng-Yu WANG, Charanjit Singh PAUR
  • Publication number: 20160061786
    Abstract: The thermally modulated, two-dimensional gas chromatographic separation of a mixture of compounds with boiling points higher than 260° C. uses a cold trap with a gas jet at ambient temperatures.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventor: Frank Cheng-Yu Wang
  • Publication number: 20150369763
    Abstract: The distribution of nitrogen species in a long chain alkenyl succinimide dispersants is quantitated and speciated by means of 15N nuclear magnetic resonance spectroscopy.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 24, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Gordon J. KENNEDY, Frank Cheng-Yu WANG, Steven Webster LEVINE, Liepao Oscar FARNG, Margaret May-Som WU
  • Publication number: 20150369762
    Abstract: The nitrogen species in a long chain alkenyl succinimide are quantitated and speciated by means of X-Ray Photoelectron Spectroscopy with speciation being made by chemometrically curve resolving the XPS spectrum.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 24, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Frank Cheng-Yu WANG, Simon Robert KELEMEN, Liepao Oscar FARNG, Margaret May-Som WU
  • Patent number: 9206370
    Abstract: Provided are lube base stocks produced from renewable biological sources with improved low temperature properties. In one form, the lube base stock includes from 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio (Cold Crank Simulator (CCS) viscosity to the predicted CCS viscosity by Walther equation) of less than or equal to 0.85 at ?35° C. The base stocks are useful as in formulated lubricant compositions requiring improved low temperature properties.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 8, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Kristen Amanda Lyon, Eugenio Sanchez, Charles Lambert Baker, Jr., Beatrice Marie Gooding, Frank Cheng-Yu Wang
  • Patent number: 9206372
    Abstract: Provided are lubricant compositions from renewable biological sources with improved properties and methods of making and using such compositions. In one form, the lubricant composition includes from 20 to 99.8 wt. % of a lube base stock produced from a renewable biological source and an effective amount of one or more lubricant additives. The lube base stock includes 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio of less than or equal to 0.85 at ?35° C. The lubricant compositions exhibit improved solvency and % thickening when blended with a viscosity modifier.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 8, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Kristen Amanda Lyon, Eugenio Sanchez, Charles Lambert Baker, Jr., Beatrice Marie Gooding, Frank Cheng-Yu Wang
  • Publication number: 20140174980
    Abstract: Provided is a hydrocarbon tar. The tar has 75 wt % or more of aromatics of 10 carbons to 75 carbons based on the total weight of the tar. The aromatics exhibit 40% to 80% aromaticity. The tar has a boiling point of from 300° F. to 1350° F. There is also a fuel oil composition having the tar therein. There are also processes for making the hydrocarbon tar.
    Type: Application
    Filed: March 12, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen Harold Brown, Frank Cheng-Yu Wang, Stephen Mark Davis, Cathleen Yung
  • Publication number: 20140171699
    Abstract: Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 19, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Virginia M. Roberts, Paul D. Oldenburg, Suzzy Chen Hsi Ho, Michel Daage, Frank Cheng-Yu Wang