Patents by Inventor Frank Dornseifer

Frank Dornseifer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220374035
    Abstract: A system includes a digital controller in a voltage regulator. The system also includes a passgate array including two or more passgate transistors, where the passgate array is configured to provide a load current to a load, and where the digital controller is configured to activate and deactivate each passgate transistor in the passgate array. The system also includes a feedback loop configured to provide an error signal to the digital controller, the error signal based on a difference between an output voltage of the voltage regulator and a programmed voltage for the voltage regulator. The digital controller is configured to activate or deactivate a passgate transistor based at least in part on the error signal. The digital controller is also configured to activate at least one passgate transistor and deactivate at least one passgate transistor responsive to a clock cycle.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 24, 2022
    Inventors: Johannes GERBER, Asif QAIYUM, Fraj GHARIB, Christian Josef SICHERT, Ruediger KUHN, Frank DORNSEIFER, Bernhard Wolfgang RUCK
  • Patent number: 10969814
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: April 6, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Publication number: 20190278315
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Patent number: 10345844
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: July 9, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Publication number: 20170147027
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Patent number: 9606563
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Patent number: 9429968
    Abstract: A power-gated electronic device and a method of operating the same is provided. The power-gated electronic device comprises a low drop out voltage power supply (LDO), an auxiliary power supply and at least one electronic domain having a power gate. The LDO provides a supply voltage to the at least one electronic domain which is coupled to a supply rail of the LDO via a switch, acting as a power gate. The auxiliary power supply comprises at least one current source which is coupled to the electronic domain via an auxiliary switch acting as an auxiliary power gate. The auxiliary power supply is configured to control the auxiliary switch as a function of a voltage difference between a reference voltage and the auxiliary supply voltage.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Johannes Gerber, Frank Dornseifer
  • Publication number: 20150378374
    Abstract: A power gated electronic device that includes a power supply domain coupled to a power gate switch, a comparator, and control logic. The power supply domain is configured to receive voltage from a power supply. The comparator is configured to receive voltage from the power supply domain and compare the voltage from the power supply domain with a threshold level. The control logic is configured to receive the output of the comparator and, based on the comparison between the voltage from the power supply domain and the threshold level, cause the power supply domain to pulldown.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Matthias ARNOLD, Johann ZIPPERER, Frank DORNSEIFER
  • Publication number: 20150286236
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Applicant: Texas Instruments Deutschland GmbH
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber
  • Patent number: 8941417
    Abstract: A system for recovering energy from a sensor couples a battery to an inductive device in the sensor for a period of time, such that a current flows through the inductive device from the battery during the time period. The connections of the inductive device are then reversed for a second period of time. During the second time period, a current flow resulting from energy stored in the inductor is allowed to flow back to the battery, such that a portion of the energy from the inductor recharges the battery during the second period of time.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Frank Dornseifer, Bernard Wolfgang Ruck, Erich Bayer
  • Publication number: 20140240008
    Abstract: A system for recovering energy from a sensor couples a battery to an inductive device in the sensor for a period of time, such that a current flows through the inductive device from the battery during the time period. The connections of the inductive device are then reversed for a second period of time. During the second time period, a current flow resulting from energy stored in the inductor is allowed to flow back to the battery, such that a portion of the energy from the inductor recharges the battery during the second period of time.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: TEXAS INSTRUMENTS DEUTSCLAND GMBH
    Inventors: Frank Dornseifer, Bernard Wolfgang Ruck, Erich Bayer
  • Publication number: 20130271103
    Abstract: A power-gated electronic device and a method of operating the same is provided. The power-gated electronic device comprises a low drop out voltage power supply (LDO), an auxiliary power supply and at least one electronic domain having a power gate. The LDO provides a supply voltage to the at least one electronic domain which is coupled to a supply rail of the LDO via a switch, acting as a power gate. The auxiliary power supply comprises at least one current source which is coupled to the electronic domain via an auxiliary switch acting as an auxiliary power gate. The auxiliary power supply is configured to control the auxiliary switch as a function of a voltage difference between a reference voltage and the auxiliary supply voltage.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Johannes Gerber, Frank Dornseifer
  • Patent number: 8400849
    Abstract: An electronic device comprising a first supply voltage domain, a second supply voltage domain and a low drop output voltage regulator (LDO) coupled to receive a supply voltage of the first supply voltage domain and to provide a supply voltage of the second supply voltage domain and the LDO being configured to be switched into a first state for providing and maintaining the supply voltage of the second supply voltage domain and into a second state for providing a high impedance output to the second supply voltage domain. The electronic device includes a comparator coupled to monitor the first supply voltage level at a first supply voltage node and to switch the LDO from the first state to the second state.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: March 19, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Frank Dornseifer, Ruediger Kuhn, Johannes Gerber
  • Patent number: 8390333
    Abstract: The invention relates to an electronic device which comprises a comparator coupled to monitor a first supply voltage level at a first supply voltage node. The comparator comprises a differential input transistor stage having one input coupled to the first supply voltage node and the other input coupled to receive a reference voltage level, a first current source configured to supply a current of a first magnitude, a second current source configured to supply a current of a second magnitude, and a capacitor. The first magnitude is greater than the second magnitude and the first current source is coupled with one side to the differential input stage for supplying the differential input stage and with the other side to a first node. The second current source is coupled with one side to the first node and with the other side to a second supply voltage node having a second supply voltage level and the capacitor is coupled with one side to the first node and with the other side to the first supply voltage node.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 5, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: RĂ¼diger Kuhn, Ivanov Vadim V. Vadim Ivanov, Frank Dornseifer, Michael Zwerg
  • Publication number: 20120062279
    Abstract: The invention relates to an electronic device which comprises a comparator coupled to monitor a first supply voltage level at a first supply voltage node. The comparator comprises a differential input transistor stage having one input coupled to the first supply voltage node and the other input coupled to receive a reference voltage level, a first current source configured to supply a current of a first magnitude, a second current source configured to supply a current of a second magnitude, and a capacitor. The first magnitude is greater than the second magnitude and the first current source is coupled with one side to the differential input stage for supplying the differential input stage and with the other side to a first node. The second current source is coupled with one side to the first node and with the other side to a second supply voltage node having a second supply voltage level and the capacitor is coupled with one side to the first node and with the other side to the first supply voltage node.
    Type: Application
    Filed: August 8, 2011
    Publication date: March 15, 2012
    Applicant: Texas Instruments Deutschland GMBH
    Inventors: RĂ¼diger Kuhn, Ivanov Vadim, Frank Dornseifer, Michael Zwerg