Patents by Inventor Frank E. Manning

Frank E. Manning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8632491
    Abstract: Catheter or guidewire mounted automatic vessel occlusion and fluid dispersion devices that expand to occlude or partially occlude a vessel when a fluid is flowing in the catheter or guidewire, and that automatically collapse when fluid flow is stopped. Each occlusion device has an elastic skeleton covered with a flexible cover coupled thereto and may have a hole(s) or openings in its distal or proximal end thereof to allow controlled flow through the desired end of the occlusion device. The fluid may be a flush fluid for enabling or improving the performance of imaging devices and image enhancing fluids, of treatment fluids for localized treatment of a vessel or tissues in communication with the vessel and/or of the transmission of energy to the vessel wall and adjacent tissues. Various embodiments are disclosed.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 21, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: William E. Webler, Gary Hague, Frank E. Manning
  • Publication number: 20120302891
    Abstract: Catheter or guidewire mounted automatic vessel occlusion and fluid dispersion devices that expand to occlude or partially occlude a vessel when a fluid is flowing in the catheter or guidewire, and that automatically collapse when fluid flow is stopped. Each occlusion device has an elastic skeleton covered with a flexible cover coupled thereto and may have a hole(s) or openings in its distal or proximal end thereof to allow controlled flow through the desired end of the occlusion device. The fluid may be a flush fluid for enabling or improving the performance of imaging devices and image enhancing fluids, of treatment fluids for localized treatment of a vessel or tissues in communication with the vessel and/or of the transmission of energy to the vessel wall and adjacent tissues. Various embodiments are disclosed.
    Type: Application
    Filed: May 31, 2012
    Publication date: November 29, 2012
    Inventors: William E. Webler, Gary Hague, Frank E. Manning
  • Patent number: 8197441
    Abstract: Catheter or guidewire mounted automatic vessel occlusion and fluid dispersion devices that expand to occlude or partially occlude a vessel when a fluid is flowing in the catheter or guidewire, and that automatically collapse when fluid flow is stopped. Each occlusion device has an elastic skeleton covered with a flexible cover coupled thereto and may have a hole(s) or openings in its distal or proximal end thereof to allow controlled flow through the desired end of the occlusion device. The fluid may be a flush fluid for enabling or improving the performance of imaging devices and image enhancing fluids, of treatment fluids for localized treatment of a vessel or tissues in communication with the vessel and/or of the transmission of energy to the vessel wall and adjacent tissues. Various embodiments are disclosed.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 12, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: William E. Webler, Gary Hague, Frank E. Manning
  • Patent number: 8126570
    Abstract: A guide catheter includes an outer guide having an open lumen and a longitudinal pre-stress line extending between a distal end and a proximal end of the outer guide. The outer guide has a longitudinal stiffness that facilitates transmission of forces and prevention of kinking during steering of the outer guide within cardiac vasculature and structures. An inner guide has an open lumen and is movably displaceable within the open lumen of the outer guide. At least a distal end of the outer guide and inner guide are dimensioned for passage into the patient's coronary sinus. A guide handle is connected to the proximal end of the outer guide and includes a longitudinal pre-stress line separable into at least two sections such that guide handle separation splits the outer guide along the longitudinal pre-stress line at the proximal end of the outer guide.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 28, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Publication number: 20100198194
    Abstract: A guide catheter includes an outer guide having an open lumen and a longitudinal pre-stress line extending between a distal end and a proximal end of the outer guide. The outer guide has a longitudinal stiffness that facilitates transmission of forces and prevention of kinking during steering of the outer guide within cardiac vasculature and structures. An inner guide has an open lumen and is movably displaceable within the open lumen of the outer guide. At least a distal end of the outer guide and inner guide are dimensioned for passage into the patient's coronary sinus. A guide handle is connected to the proximal end of the outer guide and includes a longitudinal pre-stress line separable into at least two sections such that guide handle separation splits the outer guide along the longitudinal pre-stress line at the proximal end of the outer guide.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 5, 2010
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 7697996
    Abstract: A guide catheter includes an outer guide having an open lumen and a longitudinal pre-stress line extending between a distal end and a proximal end of the outer guide. The outer guide has a longitudinal stiffness that facilitates transmission of forces and prevention of kinking during steering of the outer guide within cardiac vasculature and structures. An inner guide has an open lumen and is movably displaceable within the open lumen of the outer guide. At least a distal end of the outer guide and inner guide are dimensioned for passage into the patient's coronary sinus. A guide handle is connected to the proximal end of the outer guide and includes a longitudinal pre-stress line separable into at least two sections such that guide handle separation splits the outer guide along the longitudinal pre-stress line at the proximal end of the outer guide.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 7493156
    Abstract: A guide catheter employs a retractable inner sheath movably disposed within an open lumen of an outer sheath. The inner sheath includes a pre-formed distal end and an open lumen adapted to receive a payload. The inner sheath is translatable and rotatable relative to the outer sheath. The inner sheath conforms to the outer sheath shape until it is distally extended beyond the outer sheath. The outer sheath contains a steering tendon that can be used to adjustably deflect the outer sheath. The guide catheter further includes a proximally attached guide handle. A steering handle can be pivotably connected to the guide handle. The steering handle is connected to the steering tendon and can apply a tensile force to the steering tendon for adjustably deflecting the outer sheath. A catheter according to the present invention provides an improved system for locating and cannulating cardiac venous structures, particularly the coronary sinus via the right atrium.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: February 17, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 7117039
    Abstract: Methods of using a guide catheter employ a retractable inner guide movably disposed within an open lumen of a splittable outer guide. The outer guide includes a longitudinal pre-stress line extending from distal to proximal ends. The inner guide includes an open lumen adapted to receive a payload. The inner guide is translatable and rotatable relative to the outer guide. The guide catheter further includes a proximally attached guide handle which is separable into at least two sections. Separation of the guide handle splits the proximal end of the outer guide. Proximal outer guide retraction continues the splitting of the outer guide along the longitudinal pre-stress line.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: October 3, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 6979319
    Abstract: A guide catheter employs a retractable inner guide movably disposed within an open lumen of a splittable outer guide. The outer guide includes a longitudinal pre-stress line extending from distal to proximal ends. The inner guide includes an open lumen adapted to receive a payload. The inner guide is translatable and rotatable relative to the outer guide. The guide catheter further includes a proximally attached guide handle which is separable into at least two sections. Separation of the guide handle splits the proximal end of the outer guide. Proximal outer guide retraction continues the splitting of the outer guide along the longitudinal pre-stress line.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: December 27, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 6953454
    Abstract: Methods of accessing a destination vessel involve use of a catheter having an outer guide and an inner guide. The outer guide includes an outer guide lumen, a distal end, a proximal end, and a predetermined deflection location proximate the distal end. The inner guide includes an inner guide lumen, a pre-formed distal end, and a proximal end. An access method can involve axially displacing the inner guide beyond the distal end of the outer guide, axially rotating the inner guide relative to the outer guide, and changing a bend angle at the predetermined deflection location of the outer guide to direct the pre-formed distal end of the inner guide for finding and cannulating the destination vessel. A payload can be delivered into the destination vessel via the inner guide, or via the outer guide upon removal of the inner guide.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: October 11, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Charles R. Peterson, Frank E. Manning
  • Publication number: 20040260236
    Abstract: Methods involving guide catheters include providing a guide catheter that has an outer sheath having an open lumen and a pre-shaped distal end, and an inner sheath having an open lumen and a distal end provided with a pre-formed shape. A steering tendon is disposed along the outer sheath, a distal end of which is connected to the outer sheath's distal tip. A steering mechanism is connected to a proximal end of the steering tendon and includes a guide handle. The inner sheath is rotated and longitudinally translated relative to the outer sheath, whereby the distal end of the inner sheath assumes its pre-formed shape when the inner sheath's distal end extends beyond the outer sheath's distal end. A pulling force applied to the steering tendon adjustably changes a shape of the outer sheath's pre-shaped distal end. A payload may be advanced through the inner sheath's open lumen.
    Type: Application
    Filed: July 14, 2004
    Publication date: December 23, 2004
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Patent number: 6755812
    Abstract: A catheter employs an inner guide with a pre-formed distal tip, an outer guide with a predetermined deflection location, and a proximal actuator. The inner guide can be longitudinally extended and axially rotated relative to the outer guide. The proximal actuator can adjustably change a bend angle of the predetermined deflection location. The catheter can be deployed with the inner guide retracted inside the distal end of the outer catheter. The extensible and rotatable inner catheter can be combined with the adjustable bend angle of the outer guide to provide an improved system for accessing and cannulating venous structures.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 29, 2004
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Charles R. Peterson, Frank E. Manning
  • Publication number: 20030195525
    Abstract: Methods of accessing a destination vessel involve use of a catheter having an outer guide and an inner guide. The outer guide includes an outer guide lumen, a distal end, a proximal end, and a predetermined deflection location proximate the distal end. The inner guide includes an inner guide lumen, a pre-formed distal end, and a proximal end. An access method can involve axially displacing the inner guide beyond the distal end of the outer guide, axially rotating the inner guide relative to the outer guide, and changing a bend angle at the predetermined deflection location of the outer guide to direct the pre-formed distal end of the inner guide for finding and cannulating the destination vessel. A payload can be delivered into the destination vessel via the inner guide, or via the outer guide upon removal of the inner guide.
    Type: Application
    Filed: May 8, 2003
    Publication date: October 16, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Charles R. Peterson, Frank E. Manning
  • Publication number: 20030130598
    Abstract: A guide catheter employs a retractable inner sheath movably disposed within an open lumen of an outer sheath. The inner sheath includes a pre-formed distal end and an open lumen adapted to receive a payload. The inner sheath is translatable and rotatable relative to the outer sheath. The inner sheath conforms to the outer sheath shape until it is distally extended beyond the outer sheath. The outer sheath contains a steering tendon that can be used to adjustably deflect the outer sheath. The guide catheter further includes a proximally attached guide handle. A steering handle can be pivotably connected to the guide handle. The steering handle is connected to the steering tendon and can apply a tensile force to the steering tendon for adjustably deflecting the outer sheath. A catheter according to the present invention provides an improved system for locating and cannulating cardiac venous structures, particularly the coronary sinus via the right atrium.
    Type: Application
    Filed: January 7, 2002
    Publication date: July 10, 2003
    Applicant: Cardiac Pacemaker, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Publication number: 20030125619
    Abstract: A guide catheter employs a retractable inner guide movably disposed within an open lumen of a splittable outer guide. The outer guide includes a longitudinal pre-stress line extending from distal to proximal ends. The inner guide includes an open lumen adapted to receive a payload. The inner guide is translatable and rotatable relative to the outer guide. The guide catheter further includes a proximally attached guide handle which is separable into at least two sections. Separation of the guide handle splits the proximal end of the outer guide. Proximal outer guide retraction continues the splitting of the outer guide along the longitudinal pre-stress line.
    Type: Application
    Filed: December 31, 2001
    Publication date: July 3, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Frank E. Manning, Charles R. Peterson, Howard P. Graham
  • Publication number: 20030109852
    Abstract: A catheter employs an inner guide with a pre-formed distal tip, an outer guide with a predetermined deflection location, and a proximal actuator. The inner guide can be longitudinally extended and axially rotated relative to the outer guide. The proximal actuator can adjustably change a bend angle of the predetermined deflection location. The catheter can be deployed with the inner guide retracted inside the distal end of the outer catheter. The extensible and rotatable inner catheter can be combined with the adjustable bend angle of the outer guide to provide an improved system for accessing and cannulating venous structures.
    Type: Application
    Filed: December 11, 2001
    Publication date: June 12, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Charles R. Peterson, Frank E. Manning
  • Patent number: 6102106
    Abstract: A heat exchanger for heat exchange between a working fluid and a coolant having an inner casing, an outer casing, and an annular space formed therebetween. A tube bundle including at least one tube formed into a helical coil is located within the annular space. End plates are removably secured and sealed to the ends of the outer casing. Bulkhead fittings are mounted in openings of the end plates to seal the tube ends which pass through the end plates. The bulkhead fittings are sized to permit the end plates to be moved off of the bulkhead fittings in a direction away from the helical coil. The tube bundle may also include a separating plate extending longitudinally between the coils of two tubes within the tube bundle creating two separate passages through which coolant may flow. External tubes may be connected at the tube ends, outside of the outer casing and the end plates, such that the working fluid flows in a parallel single-pass flow or a series double-pass flow through the annular space.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: August 15, 2000
    Assignee: Flowserve Management Company
    Inventors: Frank E. Manning, Ronald L. Grace
  • Patent number: 6076597
    Abstract: A heat exchanger for heat exchange between a working fluid and a coolant having an inner casing, an outer casing, and an annular space formed therebetween. A tube bundle including at least one tube formed into a helical coil is located within the annular space. End plates are removably secured and sealed to the ends of the outer casing. Bulkhead fittings are mounted in openings of the end plates to seal the tube ends which pass through the end plates. The bulkhead fittings are sized to permit the end plates to be moved off of the bulkhead fittings in a direction away from the helical coil. The tube bundle may also include a separating plate extending longitudinally between the coils of two tubes within the tube bundle creating two separate passages through which coolant may flow. External tubes may be connected at the tube ends, outside of the outer casing and the end plates, such that the working fluid flows in a parallel single-pass flow or a series double-pass flow through the annular space.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: June 20, 2000
    Assignee: Flowserve Management Company
    Inventors: Frank E. Manning, Ronald L. Grace
  • Patent number: 4697601
    Abstract: A device for measuring forces generated by a human tongue in three dimensions, i.e., along X, Y and Z axis. The device comprises a housing having sidewalls (preferably cylindrical), a closed back wall and a front wall having a central opening. An elongated beam extend through the opening into the housing to a mounting member which secures the inner beam end to the housing near the back wall. Strain gages are mounted on the beam near the mounting member to measure deflection of the free beam end in X and Y directions. A diaphragm extends across the housing between the mounting member and the back wall. A pin is movably positioned in a axial bore in the beam with one end in contact with the diaphragm and the other extending beyond the beam and housing. Strain gages mounted on the diaphragm detect movement of the diaphragm in the Z direction in response to changing force of the pin against the diaphragm.
    Type: Grant
    Filed: December 12, 1986
    Date of Patent: October 6, 1987
    Inventors: Darryl L. Durkee, Frank E. Manning