Patents by Inventor Frank E. Sauser

Frank E. Sauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210298643
    Abstract: One or more radar sensors can be used to monitor patients in a variety of different environments and embodiments. In one embodiment, radar sensors can be used to monitor a patient's movement, including movement in a patient bed and around a room. In another embodiment, a patient position can be monitored in a patient bed, which can be used as feedback for control of bladders of a patient bed. Additional embodiments are described herein.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 30, 2021
    Inventors: Steven D. Baker, Douglas A. Seim, Frank E. Sauser, Theodore Corsaro, Michael Churilla, Kathryn R. Smith, Eric R. Meyer, Gregory J. Shannon, Michael S. Hood, Brandon P. Fisk, Rachel L. Williamson
  • Patent number: 11129482
    Abstract: Embodiments include a person support apparatus including a plurality of air fluidizable material, a tub, a foam bolster disposed along at least one wall of the tub and extending over the at least one wall, and an inflatable air bladder disposed above the foam bolster along the at least one wall of the tub. A method of assisting a person with ingress or egress of a person support apparatus by deflating the inflatable air bladder and adjusting a level of fluidization of the air fluidizable material such that the surface supporting the portion of the person is substantially level with a top of the foam bolster is also described.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: September 28, 2021
    Assignee: Hill-Rom Services, Inc.
    Inventors: Darrell Borgman, Frank E. Sauser, Joshua A. Williams
  • Publication number: 20210244575
    Abstract: An absorbent article has one or more fluid filter layers to inhibit electrode traces from being exposed to low volumes of fluid to reduce the number of false positives that are indicated by an RFID tag of the incontinence detection pad. An antenna inlay has a sacrificial trace portion to permit testing for proper operation of an RFID chip electrically coupled to the antenna inlay. After testing, the sacrificial trace portion is severed. A fluid barrier layer blocks fluid from reaching portions of electrode traces that are located on a backsheet outside a periphery of an absorbent core of an incontinence detection pad. The power at which an antenna transmits to wirelessly energize a passive RFID tag of an incontinence detection pad is controlled to reduce the number of false positives indicated by the RFID tag.
    Type: Application
    Filed: April 28, 2021
    Publication date: August 12, 2021
    Inventors: Ryan S. Severns, James D. Voll, Brett A. Knittle, Gavin M. Monson, John V. Harmeyer, Charles A. Lachenbruch (Deceased), Frank E. Sauser, Joseph T. Canter, Yongji Fu, Kirsten M. Emmons, David L. Ribble, Neal Wiggermann, John D. Christie, Dan R. Tallent, Marwan Nusair, Edward J. Koors
  • Patent number: 11071666
    Abstract: A sleep apparatus, such as a mattress, comprises a head support surface sized to support a person's head, and a torso support surface sized to support a person's torso. The head support surface is generally laterally sloped moving from a first side toward a second side of the mattress, and the torso support surface is generally laterally sloped moving from the first side toward the second side. In some embodiments, the lateral slope of the head support surface is at least about 15°, the lateral slope of the head support surface is greater than the lateral slope of the torso support surface, and/or, the sleep apparatus slopes in the longitudinal direction as well.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: July 27, 2021
    Assignee: Hill-Rom Services, Inc.
    Inventors: Kirsten M. Emmons, David L. Ribble, Yongji Fu, Michael S. Hood, Frank E. Sauser, Eric D. Agdeppa, Joshua A. Williams, John V. Harmeyer
  • Publication number: 20210169361
    Abstract: A movement detection device includes a signal transmission device configured to transmit a radar signal transmission toward a target area and to receive reflected radar signals, and a signal analysis device configured to analyze the reflected radar signals to detect a movement in the target area that is indicative of micro-shivering. In response to detecting the micro-shivering, the movement detection device generates an alarm.
    Type: Application
    Filed: November 24, 2020
    Publication date: June 10, 2021
    Inventors: Steven D. Baker, Jennifer Bergstrom, Heinz-Hermann Dalbert, Brandon P. Fisk, Yongji Fu, Michael S. Hood, Charles A. Lachenbruch, John A. Lane, Kenzi L. Mudge, Matthew O'Neal, Frank E. Sauser, Douglas A. Seim, Gregory J. Shannon
  • Patent number: 11020284
    Abstract: An absorbent article has one or more fluid filter layers to inhibit electrode traces from being exposed to low volumes of fluid to reduce the number of false positives that are indicated by an RFID tag of the incontinence detection pad. An antenna inlay has a sacrificial trace portion to permit testing for proper operation of an RFID chip electrically coupled to the antenna inlay, After testing, the sacrificial trace portion is severed. A fluid barrier layer blocks fluid from reaching portions of electrode traces that are located on a backsheet outside a periphery of an absorbent core of an incontinence detection pad. The power at which an antenna transmits to wirelessly energize a passive RFID tag of an incontinence detection pad is controlled to reduce the number of false positives indicated by the RFID tag.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 1, 2021
    Assignee: Hill-Rom Services, Inc.
    Inventors: Ryan S. Severns, James D. Voll, Brett A. Knittle, Gavin M. Monson, John V. Harmeyer, Charles A. Lachenbruch, Frank E. Sauser, Joseph T. Canter, Yongji Fu, Kirsten M. Emmons, David L. Ribble, Neal Wiggermann, John D. Christie, Dan R. Tallent, Marwan Nusair, Edward J. Koors
  • Patent number: 10912693
    Abstract: A patient support system for supporting a patient includes a core support structure which includes supportive foam. The support structure has an upper surface and a lower surface. A radar apparatus, including at least one antenna situated beneath the upper surface and spatially separated therefrom, is adapted to emit a pulse which travels through the support structure and is reflected, by either the upper surface or a surrogate thereof, as a reflected signal back to the radar antenna. The emitted pulse and reflected signal comprise a ranging signal. The patient support system also includes circuitry that determines a life parameter of the core support structure as a function of at least the ranging signal. The patient support system also includes an RFID tag having a memory. The RFID tag is in communication with the circuitry.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: February 9, 2021
    Assignee: Hill-Rom Services, Inc.
    Inventors: Steven D. Baker, Frank E. Sauser
  • Publication number: 20210007921
    Abstract: A patient immersion sensor includes a radio detection and ranging (RADAR) apparatus to determine a time of flight (TOF) of a RADAR pulse and a reflected signal that is reflected by a patient or by a portion of a patient support surface supporting the patient. The TOF is indicative of an immersion depth or a distance toward bottoming out of a patient supported on the patient support surface, such as a mattress or a pad. The RADAR apparatus emits pulses of very short duration so as to be able to detect objects, such as a patient or a portion of a mattress or pad, at very close distances. The RADAR apparatus may use time-of-flight (TOF) between transmission of the pulse and receipt of a reflected signal to determine a distance toward bottoming out by the patient, thereby to determine if the patient is properly immersed into the patient support surface.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Frank E. Sauser, Steven D. Baker
  • Patent number: 10857051
    Abstract: An occupant support system includes a framework, a mattress supported by the framework and having at least one bladder, an electromagnetic signal source, and an electromagnetic signal receiver. The receiver is spaced from the occupant facing side of the mattress. The signal source is configured to direct an electromagnetic signal at a target. The signal receiver is configured to receive a return signal from the target in response to the directed signal. The system also includes a processor adapted to determine immersion of the target as a function of the information content of the return signal.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 8, 2020
    Assignee: Hill-Rom Services, Inc.
    Inventors: Frank E. Sauser, Marwan Nusair, Nicholas C. Batta, James D. Voll
  • Publication number: 20200375551
    Abstract: A patient support apparatus may include a foam frame defining a space. A bladder assembly may be positioned in the space. The bladder assembly may include a plurality of foam filled bladders. Each of the foam filled bladders may be interconnected by a manifold. A plurality of mutually exclusively selectable pressure relief valves may be provided to release air from the bladder assembly.
    Type: Application
    Filed: May 19, 2020
    Publication date: December 3, 2020
    Inventors: Frank E. Sauser, Charles A. Lachenbruch (Deceased), Kathryn R. Smith, Jnanesha Ramegowda, Jason B. Grace, Douglas E. Borgman, Nolan D. Wanner, Steven D. Baker, Douglas A. Seim
  • Patent number: 10813809
    Abstract: A patient immersion sensor includes a radio detection and ranging (RADAR) apparatus to determine a time of flight (TOF) of a RADAR pulse and a reflected signal that is reflected by a patient or by a portion of a patient support surface supporting the patient. The TOF is indicative of an immersion depth or a distance toward bottoming out of a patient supported on the patient support surface, such as a mattress or a pad. The RADAR apparatus emits pulses of very short duration so as to be able to detect objects, such as a patient or a portion of a mattress or pad, at very close distances. The RADAR apparatus may use time-of-flight (TOF) between transmission of the pulse and receipt of a reflected signal to determine a distance toward bottoming out by the patient, thereby to determine if the patient is properly immersed into the patient support surface.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 27, 2020
    Assignee: Hill-Rom Services, Inc.
    Inventors: Frank E. Sauser, Steven D. Baker
  • Publication number: 20200323717
    Abstract: A patient support apparatus includes a base frame, lift mechanism supporting an upper frame relative to the base frame, a load frame, and a plurality of deck sections, a patient support surface, and a number of barriers positioned about the patient supporting surface. The patient support apparatus includes a notification system for visually notifying a caregiver of a condition or status of a component of the patient support apparatus.
    Type: Application
    Filed: December 26, 2019
    Publication date: October 15, 2020
    Inventors: Robert M. ZERHUSEN, Richard H. HEIMBROCK, Arpit SHAH, Aziz A. BHAI, Bradley T. SMITH, Catherine M. WAGNER, Charles A. LACHENBRUCH, Clay G. OWSLEY, Dan R. TALLENT, Daniel NACHTIGAL, David L. BEDEL, David J. BRZENCHEK, David J. HITCHCOCK, David P. LUBBERS, Douglas A. SEIM, Douglas E. BORGMAN, Eric D. BENZ, Florin IUCHA, Frank E. SAUSER, Gavin M. MONSON, James W. PASCOE, James L. WALKE, Jared RUDE, John G. BYERS, John D. CHRISTIE, Jonathan D. TURNER, Joshua A. WILLIAMS, Karen LANNING, Kathryn SMITH, Kirsten M. EMMONS, Mary Kay BRINKMAN, Michael BUCCIERI, Nathaniel W. HIXON, Neal WIGGERMANN, Richard J. SCHUMAN, SR., Scott M. CORBIN, Sravan MAMIDI, Todd P. O'NEAL, Todd S. VENTROLA, Travis PELO, Unnati OJHA, John GOEWERT
  • Publication number: 20200315894
    Abstract: Vibrational dressing systems, vibrational dressing devices, and methods for placing the same are disclosed. Vibrational dressing systems and vibrational dressing devices include a first portion and a second portion. The first portion may be contoured to a target treatment location of a subject. The second portion may be coupled to the first portion and the second portion may include a plurality of vibrational devices and a control system. Each vibrational device may vibrate the target treatment location and each vibrational device may be positioned within the second portion to correspond with a particular location on a body of the subject within the target treatment location when the first portion is coupled to the body of the subject. The control system may selectively activate one or more of the plurality of vibrational devices.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Michael Churilla, Charles A. Lachenbruch, Frank E. Sauser
  • Publication number: 20200289338
    Abstract: An absorbent article has one or more fluid filter layers to inhibit electrode traces from being exposed to low volumes of fluid to reduce the number of false positives that are indicated by an RFID tag of the incontinence detection pad. An antenna inlay has a sacrificial trace portion to permit testing for proper operation of an RFID chip electrically coupled to the antenna inlay, After testing, the sacrificial trace portion is severed. A fluid barrier layer blocks fluid from reaching portions of electrode traces that are located on a backsheet outside a periphery of an absorbent core of an incontinence detection pad. The power at which an antenna transmits to wirelessly energize a passive RFID tag of an incontinence detection pad is controlled to reduce the number of false positives indicated by the RFID tag.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Ryan S. Severns, James D. Voll, Brett A. Knittle, Gavin M. Monson, John V. Harmeyer, Charles A. Lachenbruch, Frank E. Sauser, Joseph T. Canter, Yongji Fu, Kirsten M. Emmons, David L. Ribble, Neal Wiggermann, John D. Christie, Dan R. Tallent, Marwan Nusair, Edward J. Koors
  • Publication number: 20200253539
    Abstract: A system for detecting pressure sores includes an artificial skin configured to be coupled to a patient's skin. The artificial skin includes a substrate and a strain sensor configured to detect deformation of the substrate. A transmitter is configured to transmit signals indicative of the deformation of the substrate. A control system is configured to receive the signals from the transmitter. The control system includes a timer to track a period of time that the substrate is deformed.
    Type: Application
    Filed: January 15, 2020
    Publication date: August 13, 2020
    Inventors: Philippe Kaikenger, Michael Churilla, Frank E. Sauser, Charles A. Lachenbruch
  • Patent number: 10716715
    Abstract: An absorbent article has one or more fluid filter layers to inhibit electrode traces from being exposed to low volumes of fluid to reduce the number of false positives that are indicated by an RFID tag of the incontinence detection pad. An antenna inlay has a sacrificial trace portion to permit testing for proper operation of an RFID chip electrically coupled to the antenna inlay. After testing, the sacrificial trace portion is severed. A fluid barrier layer blocks fluid from reaching portions of electrode traces that are located on a backsheet outside a periphery of an absorbent core of an incontinence detection pad. The power at which an antenna transmits to wirelessly energize a passive RFID tag of an incontinence detection pad is controlled to reduce the number of false positives indicated by the RFID tag.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 21, 2020
    Assignee: Hill-Rom Services, Inc.
    Inventors: Ryan S. Severns, James D. Voll, Brett A. Knittle, Gavin M. Monson, John V. Harmeyer, Charles A. Lachenbruch, Frank E. Sauser, Joseph T. Canter, Yongji Fu, Kirsten M. Emmons, David L. Ribble, Neal Wiggermann, John D. Christie, Dan R. Tallent, Marwan Nusair, Edward J. Koors
  • Publication number: 20190380505
    Abstract: Embodiments include a person support apparatus including a plurality of air fluidizable material, a tub, a foam bolster disposed along at least one wall of the tub and extending over the at least one wall, and an inflatable air bladder disposed above the foam bolster along the at least one wall of the tub. A method of assisting a person with ingress or egress of a person support apparatus by deflating the inflatable air bladder and adjusting a level of fluidization of the air fluidizable material such that the surface supporting the portion of the person is substantially level with a top of the foam bolster is also described.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Applicant: Hill-Rom Services, Inc.
    Inventors: Darrell Borgman, Frank E. Sauser, Joshua A. Williams
  • Publication number: 20190374387
    Abstract: A system for detecting potential for infection includes a wound dressing and an electronics component. The wound dressing includes a temperature sensing layer and a cover layer comprising a substrate and a backing layer. The electronics component includes a power source, an electronic control unit (ECU), and a communications interface positioned within a housing and removably coupled to the temperature sensing layer of the wound dressing. The electronics component is configured to receive a plurality of temperature readings from the temperature sensing layer, and provide an indication of potential infection of the wound based the plurality of temperature readings. In various embodiments, each of the plurality of temperature readings corresponds to a temperature of an area around a wound. Methods for preventing infections using the system are also described.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Applicant: Hill-Rom Services, Inc.
    Inventors: David Lance Ribble, Craig Meyerson, Henry J. Smith, Kirsten Emmons, Yongji Fu, David E. Quinn, Frank E. Sauser
  • Patent number: 10433652
    Abstract: Embodiments include a person support apparatus including a plurality of air fluidizable material, a tub, a foam bolster disposed along at least one wall of the tub and extending over the at least one wall, and an inflatable air bladder disposed above the foam bolster along the at least one wall of the tub. A method of assisting a person with ingress or egress of a person support apparatus by deflating the inflatable air bladder and adjusting a level of fluidization of the air fluidizable material such that the surface supporting the portion of the person is substantially level with a top of the foam bolster is also described.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: October 8, 2019
    Assignee: HILL-ROM SERVICES, INC
    Inventors: Darrell Borgman, Frank E. Sauser, Joshua A. Williams
  • Publication number: 20190262201
    Abstract: A patient support apparatus may include a support surface configured to conduct air along a top face of the support surface so that heat and moisture from a patient lying on the support surface are drawn away from the top face of the support surface. An opening may be formed in a side of the support surface. A cavity may extend from the opening into the support surface. An inlet port may be positioned within the cavity and fluidly coupled to the top face. A blower assembly may be configured to position within the cavity. The blower assembly may have an outlet port that couples to the inlet port when the blower assembly is positioned within the cavity. The blower assembly may conduct air through the inlet port to the top face of the support surface.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Inventors: Darrell L. Borgman, Douglas E. Borgman, Arpit Shah, Wui Hsien Wong, Keith Moores, Jason M. Gilreath, Michael R. Montini, Charles A. Lachenbruch, Eric R. Meyer, Frank E. Sauser, Catherine M. Wagner, Rachel L. Williamson, Brandon P. Fisk, Jason B. Grace, Brian Guthrie, Nicole Johannigman, Gregory J. Shannon, David C. Newkirk, Michael Churilla, Jnanesha Ramegowda, Taylor Franklin, Kathryn R. Smith, John G. Byers, Frederick K. Schultz, Andrew R. Wager, Sridhar Karimpuzha Seshadri, Gary R. Gibbons, Scott M. Corbin, John Goewert, Thomas L. Simpson, Faron L. Blessing, James D. Voll, Kin Meng Choi, Stephen S. Amrhein, Herve Gautier, Jean-Francois Lellig, Philippe Kaikenger, Matthieu Guetta