Patents by Inventor Frank Habel

Frank Habel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9856579
    Abstract: A semiconductor compound material, preferably a III-N-bulk crystal or a III-N-layer, is manufactured in a reactor by means of hydride vapor phase epitaxy (HVPE), wherein in a mixture of carrier gases a flow profile represented by local mass flow rates is formed in the reactor. The mixture can carry one or more reaction gases towards a substrate. Thereby, a concentration of hydrogen important for the reaction and deposition of reaction gases is adjusted at the substrate surface independently from the flow profile simultaneously formed in the reactor.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: January 2, 2018
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Gunnar Leibiger, Frank Habel, Stefan Eichler
  • Patent number: 9461121
    Abstract: A process for producing a doped III-N bulk crystal, wherein III denotes at least one element of the main group III of the periodic system, selected from Al, Ga and In, wherein the doped crystalline III-N layer or the doped III-N bulk crystal is deposited on a substrate or template in a reactor, and wherein the feeding of at least one dopant into the reactor is carried out in admixture with at least one group III material. In this manner, III-N bulk crystals and III-N single crystal substrates separated therefrom can be obtained with a very homogeneous distribution of dopants in the growth direction as well as in the growth plane perpendicular thereto, a very homogeneous distribution of charge carriers and/or of the specific electric resistivity in the growth direction as well as in the growth plane perpendicular thereto, and a very good crystal quality.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: October 4, 2016
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Ferdinand Scholz, Peter Brückner, Frank Habel, Gunnar Leibiger
  • Publication number: 20150292111
    Abstract: The present invention relates to the production of III-N templates and also the production of III-N single crystals, III signifying at least one element of the third main group of the periodic table, selected from the group of Al, Ga and In. By adjusting specific parameters during crystal growth, III-N templates can be obtained that bestow properties on the crystal layer that has grown on the foreign substrate which enable flawless III-N single crystals to be obtained in the form of templates or even with large III-N layer thickness.
    Type: Application
    Filed: March 21, 2013
    Publication date: October 15, 2015
    Inventors: Marit GRÜNDER, Frank BRUNNER, Eberhard RICHTER, Frank HABEL, Markus WEYERS
  • Patent number: 9115444
    Abstract: An epitaxial growth process for producing a thick III-N layer, wherein III denotes at least one element of group III of the periodic table of elements, is disclosed, wherein a thick III-N layer is deposited above a foreign substrate. The epitaxial growth process preferably is carried out by HVPE. The substrate can also be a template comprising the foreign substrate and at least one thin III-N intermediate layer. The surface quality is improved by providing a slight intentional misorientation of the substrate, and/or a reduction of the N/III ratio and/or the reactor pressure towards the end of the epitaxial growth process. Substrates and semiconductor devices with such improved III-N layers are also disclosed.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 25, 2015
    Assignees: FREIBERGER COMPOUND MATERIALS GMBH, OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ferdinand Scholz, Peter Brückner, Frank Habel, Matthias Peter, Klaus Köhler
  • Patent number: 9074297
    Abstract: A semiconductor compound material, preferably a III-N-bulk crystal or a III-N-layer, is manufactured in a reactor by means of hydride vapor phase epitaxy (HVPE), wherein in a mixture of carrier gases a flow profile represented by local mass flow rates is formed in the reactor. The mixture can carry one or more reaction gases towards a substrate. Thereby, a concentration of hydrogen important for the reaction and deposition of reaction gases is adjusted at the substrate surface independently from the flow profile simultaneously formed in the reactor.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: July 7, 2015
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Gunnar Leibiger, Frank Habel, Stefan Eichler
  • Patent number: 9016205
    Abstract: An irritation body (100, 100?) is proposed, which is formed by at least two modules (101, 102). The upper module (101) serves for acceptance of an ignition head (1) with tilt lever (3) and comprises upper blow-out apertures (8, 9). The lower module (102) is intended for acceptance of an effect-charge (11) with the effect-charge (11) being integrated in a central chamber (10) of a module (102). The chamber (10) itself is functionally connected with the upper blow-out apertures (8, 9) and also with the lower blow-out apertures (12, 18, 19, 20) in the lower module (102). The chamber (10) in the lower module (102) can, depending upon module (102), be selected in different sizes, which produces, under concomitant volume variability, output variability with defined increase in output.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: April 28, 2015
    Assignee: Rheinmetall Waffe Munition GmbH
    Inventors: Thorsten Lübbers, Kai Lübbers, Frank Habel
  • Publication number: 20150050471
    Abstract: The present invention relates to the production of III-N templates and also the production of III-N single crystals, III signifying at least one element of the third main group of the periodic table, selected from the group of Al, Ga and In. By adjusting specific parameters during crystal growth, III-N templates can be obtained that bestow properties on the crystal layer that has grown on the foreign substrate which enable flawless III-N single crystals to be obtained in the form of templates or even with large III-N layer thickness.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 19, 2015
    Applicant: Freiberger Compound Materials GMBH
    Inventors: Frank Lipski, Ferdinand Scholz, Martin Klein, Frank Habel
  • Patent number: 8778078
    Abstract: A process for producing a doped III-N bulk crystal, wherein III denotes at least one element of the main group III of the periodic system, selected from Al, Ga and In, wherein the doped crystalline III-N layer or the doped III-N bulk crystal is deposited on a substrate or template in a reactor, and wherein the feeding of at least one dopant into the reactor is carried out in admixture with at least one group III material. In this manner, III-N bulk crystals and III-N single crystal substrates separated therefrom can be obtained with a very homogeneous distribution of dopants in the growth direction as well as in the growth plane perpendicular thereto, a very homogeneous distribution of charge carriers and/or of the specific electric resistivity in the growth direction as well as in the growth plane perpendicular thereto, and a very good crystal quality.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 15, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ferdinand Scholz, Peter Brückner, Frank Habel, Gunnar Leibiger
  • Publication number: 20140151716
    Abstract: A process for producing a doped III-N bulk crystal, wherein III denotes at least one element of the main group III of the periodic system, selected from Al, Ga and In, wherein the doped crystalline III-N layer or the doped III-N bulk crystal is deposited on a substrate or template in a reactor, and wherein the feeding of at least one dopant into the reactor is carried out in admixture with at least one group III material. In this manner, III-N bulk crystals and III-N single crystal substrates separated therefrom can be obtained with a very homogeneous distribution of dopants in the growth direction as well as in the growth plane perpendicular thereto, a very homogeneous distribution of charge carriers and/or of the specific electric resistivity in the growth direction as well as in the growth plane perpendicular thereto, and a very good crystal quality.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: FREIBERGER COMPOUND MATERIALS GmbH
    Inventors: Ferdinand SCHOLZ, Peter Brückner, Frank Habel, Gunnar Leibiger
  • Publication number: 20120132100
    Abstract: An irritation body (100, 100?) is proposed, which is formed by at least two modules (101, 102). The upper module (101) serves for acceptance of an ignition head (1) with tilt lever (3) and comprises upper blow-out apertures (8, 9). The lower module (102) is intended for acceptance of an effect-charge (11) with the effect-charge (11) being integrated in a central chamber (10) of a module (102). The chamber (10) itself is functionally connected with the upper blow-out apertures (8, 9) and also with the lower blow-out apertures (12, 18, 19, 20) in the lower module (102). The chamber (10) in the lower module (102) can, depending upon module (102), be selected in different sizes, which produces, under concomitant volume variability, output variability with defined increase in output.
    Type: Application
    Filed: November 25, 2011
    Publication date: May 31, 2012
    Applicant: RHEINMETALL WAFFE MUNITION GMBH
    Inventors: Thorsten Lübbers, Kai Lübbers, Frank Habel
  • Publication number: 20120021163
    Abstract: A semiconductor compound material, preferably a III-N-bulk crystal or a III-N-layer, is manufactured in a reactor by means of hydride vapour phase epitaxy (HVPE), wherein in a mixture of carrier gases a flow profile represented by local mass flow rates is formed in the reactor. The mixture can carry one or more reaction gases towards a substrate. Thereby, a concentration of hydrogen important for the reaction and deposition of reaction gases is adjusted at the substrate surface independently from the flow profile simultaneously formed in the reactor.
    Type: Application
    Filed: January 20, 2011
    Publication date: January 26, 2012
    Inventors: Gunnar LEIBIGER, Frank Habel, Stefan Eichler
  • Patent number: 8048224
    Abstract: Embodiments of the invention relate to a process for producing a III-N bulk crystal, wherein III denotes at least one element selected from group III of the periodic system, selected from Al, Ga and In, wherein the III-N bulk crystal is grown by vapor phase epitaxy on a substrate, and wherein the growth rate is measured in real-time. By actively measuring and controlling the growth rate in situ, i.e. during the epitaxial growth, the actual growth rate can be maintained essentially constant. In this manner, III-N bulk crystals and individualized III-N single crystal substrates separated therefrom, which respectively have excellent crystal quality both in the growth direction and in the growth plane perpendicular thereto, can be obtained.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Gunnar Leibiger, Frank Habel, Stefan Eichler
  • Patent number: 7998273
    Abstract: An epitaxial growth process for producing a thick III-N layer, wherein III denotes at least one element of group III of the periodic table of elements, is disclosed, wherein a thick III-N layer is deposited above a foreign substrate. The epitaxial growth process preferably is carried out by HVPE. The substrate can also be a template comprising the foreign substrate and at least one thin III-N intermediate layer. The surface quality is improved by providing a slight intentional misorientation of the substrate, and/or a reduction of the N/III ratio and/or the reactor pressure towards the end of the epitaxial growth process. Substrates and semiconductor devices with such improved III-N layers are also disclosed.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 16, 2011
    Assignees: Freiberger Compound Materials GmbH, Osram Opto Semiconductors GmbH
    Inventors: Ferdinand Scholz, Peter Brückner, Frank Habel, Matthias Peter, Klaus Köhler
  • Publication number: 20110018106
    Abstract: An epitaxial growth process for producing a thick III-N layer, wherein III denotes at least one element of group III of the periodic table of elements, is disclosed, wherein a thick III-N layer is deposited above a foreign substrate. The epitaxial growth process preferably is carried out by HVPE. The substrate can also be a template comprising the foreign substrate and at least one thin III-N intermediate layer. The surface quality is improved by providing a slight intentional misorientation of the substrate, and/or a reduction of the N/III ratio and/or the reactor pressure towards the end of the epitaxial growth process. Substrates and semiconductor devices with such improved III-N layers are also disclosed.
    Type: Application
    Filed: October 1, 2010
    Publication date: January 27, 2011
    Inventors: Ferdinand SCHOLZ, Peter Brückner, Frank Habel, Matthias Peter, Klaus Köhler
  • Patent number: 7727332
    Abstract: In a process for forming a mask material on a III-N layer, wherein III denotes an element of the group III of the Periodic Table of Elements, selected from Al, Ga and In, a III-N layer having a surface is provided which comprises more than one facet. Mask material is selectively deposited only on one or multiple, but not on all facets. The deposition of mask material may be particularly carried out during epitaxial growth of a III-N layer under growth conditions, by which (i) growth of at least a further III-N layer selectively on a first type or a first group of facet(s) and (ii) a deposition of mask material selectively on a second type or a second group of facet(s) proceed simultaneously. By the process according to the invention, it is possible to produce free-standing thick III-N layers. Further, semiconductor devices or components having special structures and layers can be produced.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 1, 2010
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Frank Habel, Ferdinand Scholz, Barbara Neubert, Peter Brückner, Thomas Wunderer
  • Publication number: 20080213543
    Abstract: A semiconductor compound material, preferably a III-N-bulk crystal or a III-N-layer, is manufactured in a reactor by means of hydride vapour phase epitaxy (HVPE), wherein in a mixture of carrier gases a flow profile represented by local mass flow rates is formed in the reactor. The mixture can carry one or more reaction gases towards a substrate. Thereby, a concentration of hydrogen important for the reaction and deposition of reaction gases is adjusted at the substrate surface independently from the flow profile simultaneously formed in the reactor.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 4, 2008
    Inventors: Gunnar Leibiger, Frank Habel, Stefan Eichler
  • Publication number: 20080203409
    Abstract: The present invention relates to a novel process for producing (Al, Ga)N and AlGaN single crystals by means of a modified HVPE process, and also to (Al, Ga)N and AlGaN single crystals of high quality. The III-V compound semiconductors produced by the process according to the invention are used in optoelectronics, in particular for blue, white and green LEDs and also for high-power, high-temperature and high-frequency field effect transistors.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Applicant: Freiberger Compound Materials GmbH
    Inventors: Gunnar Leibiger, Frank Habel, Ferdinand Scholz, Peter Bruckner
  • Publication number: 20080203408
    Abstract: The present invention relates to a novel process for producing (Al, Ga)InN and AlGaInN single crystals by means of a modified HVPE process, and also to (Al, Ga)InN and AlGaInN bulk crystals of high quality, in particular homogeneity. The III-V compound semiconductors produced by the process according to the invention are used in optoelectronics, in particular for blue, white and green LEDs and also for high-power, high-temperature and high-frequency field effect transistors.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Applicant: Freiberger Compound Materials GmbH
    Inventors: Gunnar Leibiger, Frank Habel
  • Publication number: 20080166522
    Abstract: An epitaxial growth process for producing a thick III-N layer, wherein III denotes at least one element of group III of the periodic table of elements, is disclosed, wherein a thick III-N layer is deposited above a foreign substrate. The epitaxial growth process preferably is carried out by HVPE. The substrate can also be a template comprising the foreign substrate and at least one thin III-N intermediate layer. The surface quality is improved by providing a slight intentional misorientation of the substrate, and/or a reduction of the N/III ratio and/or the reactor pressure towards the end of the epitaxial growth process. Substrates and semiconductor devices with such improved III-N layers are also disclosed.
    Type: Application
    Filed: May 5, 2006
    Publication date: July 10, 2008
    Applicants: FREIBERGER COMPOUND MATERIALS GMBH, OSRAM OPTO SEMICONDUCTORS GMBH, FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Ferdinand Scholz, Peter Bruckner, Frank Habel, Matthias Peter, Klaus Kohler
  • Publication number: 20080083910
    Abstract: A process for producing a doped III-N bulk crystal, wherein III denotes at least one element of the main group III of the periodic system, selected from Al, Ga and In, wherein the doped crystalline III-N layer or the doped III-N bulk crystal is deposited on a substrate or template in a reactor, and wherein the feeding of at least one dopant into the reactor is carried out in admixture with at least one group III material. In this manner, III-N bulk crystals and III-N single crystal substrates separated therefrom can be obtained with a very homogeneous distribution of dopants in the growth direction as well as in the growth plane perpendicular thereto, a very homogeneous distribution of charge carriers and/or of the specific electric resistivity in the growth direction as well as in the growth plane perpendicular thereto, and a very good crystal quality.
    Type: Application
    Filed: August 8, 2007
    Publication date: April 10, 2008
    Inventors: Ferdinand Scholz, Peter Bruckner, Frank Habel, Gunnar Leibiger