Patents by Inventor Frank Havermeyer

Frank Havermeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10502688
    Abstract: Provided are methods and systems for identification and analysis of materials and molecular structures. An apparatus for identification and analysis of materials and molecular structures may include a laser. The laser may, in turn, include an amplified spontaneous emission-suppressed single-frequency laser excitation source. The apparatus may further comprise a plurality of filters. The plurality of filters may include reflective volume holographic grating blocking filters. The apparatus may also comprise an optical unit and an optical spectrometer. The optical unit may be configured to deliver excitation energy to a sample substance and capture Raman signal scattering from the sample substance. The optical spectrometer may be disposed in a path of the Raman signal and configured to measure a spectrum of the Raman signal and generate a detection signal. Finally, the apparatus may comprise a processing unit configured to analyze the spectrum.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 10, 2019
    Assignee: Ondax, Inc.
    Inventors: James Carriere, Lawrence Ho, Frank Havermeyer, Eric Maye, Randy Heyler
  • Publication number: 20170191939
    Abstract: Provided are methods and systems for identification and analysis of materials and molecular structures. An apparatus for identification and analysis of materials and molecular structures may include a laser. The laser may, in turn, include an amplified spontaneous emission-suppressed single-frequency laser excitation source. The apparatus may further comprise a plurality of filters. The plurality of filters may include reflective volume holographic grating blocking filters. The apparatus may also comprise an optical unit and an optical spectrometer. The optical unit may be configured to deliver excitation energy to a sample substance and capture Raman signal scattering from the sample substance. The optical spectrometer may be disposed in a path of the Raman signal and configured to measure a spectrum of the Raman signal and generate a detection signal. Finally, the apparatus may comprise a processing unit configured to analyze the spectrum.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: James Carriere, Lawrence Ho, Frank Havermeyer, Eric Maye, Randy Heyler
  • Publication number: 20170082489
    Abstract: Systems and methods are provided herein. An exemplary system may include a laser source, the laser source having a laser center wavelength; at least one narrowband optical element receiving light emitted by the laser, the narrowband optical element having a filter center wavelength, the narrowband optical element being arranged such that the filter center wavelength is initially spectrally aligned with the laser center wavelength, the filter center wavelength changing in response to a temperature change such that the filter center wavelength is not substantially aligned with the laser center wavelength; and a passive adjustment mechanism coupled to the narrowband optical element, the passive adjustment mechanism including an actuator, the actuator moving in response to the temperature change, the actuator motion rotating the narrowband optical element, the rotation compensating for the temperature change such that the filter center wavelength and laser center wavelength remain spectrally aligned.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 23, 2017
    Inventors: Lawrence Ho, Frank Havermeyer, Christophe Moser, James Carriere, Eric Maye, Randy Heyler
  • Patent number: 9599565
    Abstract: Provided are methods and systems for identification and analysis of materials and molecular structures. An apparatus for identification and analysis of materials and molecular structures may include a laser. The laser may, in turn, include an amplified spontaneous emission-suppressed single-frequency laser excitation source. The apparatus may further comprise a plurality of filters. The plurality of filters may include reflective volume holographic grating blocking filters. The apparatus may also comprise an optical unit and an optical spectrometer. The optical unit may be configured to deliver excitation energy to a sample substance and capture Raman signal scattering from the sample substance. The optical spectrometer may be disposed in a path of the Raman signal and configured to measure a spectrum of the Raman signal and generate a detection signal. Finally, the apparatus may comprise a processing unit configured to analyze the spectrum.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: March 21, 2017
    Assignee: Ondax, Inc.
    Inventors: James Carriere, Lawrence Ho, Frank Havermeyer, Eric Maye, Randy Heyler
  • Patent number: 9587983
    Abstract: Systems and methods are provided herein. An exemplary system may include a laser source, the laser source having a laser center wavelength; at least one narrowband optical element receiving light emitted by the laser, the narrowband optical element having a filter center wavelength, the narrowband optical element being arranged such that the filter center wavelength is initially spectrally aligned with the laser center wavelength, the filter center wavelength changing in response to a temperature change such that the filter center wavelength is not substantially aligned with the laser center wavelength; and a passive adjustment mechanism coupled to the narrowband optical element, the passive adjustment mechanism including an actuator, the actuator moving in response to the temperature change, the actuator motion rotating the narrowband optical element, the rotation compensating for the temperature change such that the filter center wavelength and laser center wavelength remain spectrally aligned.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: March 7, 2017
    Assignee: Ondax, Inc.
    Inventors: Lawrence Ho, Frank Havermeyer, Christophe Moser, James Carriere, Eric Maye, Randy Heyler
  • Patent number: 9097896
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 4, 2015
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8384992
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 26, 2013
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8369017
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 5, 2013
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8184285
    Abstract: The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm?1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 22, 2012
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8139212
    Abstract: The present invention relates to methods of measuring the optical characteristics of volume holographic gratings with high resolution and with a large spectral coverage using a spectrally broad band source in conjunction with instruments that measure the spectrum such as spectrometers, imaging spectrometers, and spectrum analyzers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 20, 2012
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Publication number: 20120044554
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 23, 2012
    Inventors: Christophe MOSER, Frank HAVERMEYER
  • Publication number: 20120002197
    Abstract: The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm?1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
    Type: Application
    Filed: June 9, 2011
    Publication date: January 5, 2012
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 8049885
    Abstract: The present invention relates to methods of measuring the optical characteristics of volume holographic gratings with high resolution and with a large spectral coverage using a spectrally broad band source in conjunction with instruments that measure the spectrum such as spectrometers, imaging spectrometers, and spectrum analyzers.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Publication number: 20110216384
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Application
    Filed: May 24, 2011
    Publication date: September 8, 2011
    Applicant: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Publication number: 20110216316
    Abstract: The present invention relates to methods of measuring the optical characteristics of volume holographic gratings with high resolution and with a large spectral coverage using a spectrally broad band source in conjunction with instruments that measure the spectrum such as spectrometers, imaging spectrometers, and spectrum analyzers.
    Type: Application
    Filed: May 24, 2011
    Publication date: September 8, 2011
    Applicant: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 7986407
    Abstract: The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm?1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: July 26, 2011
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer
  • Publication number: 20100103489
    Abstract: The invention disclosed here teaches methods and apparatus for altering the temporal and spatial shape of an optical pulse. The methods correct for the spatial beam deformation caused by the intrinsic DC index gradient in a volume holographic chirped reflective grating (VHCRG). The first set of methods involves a mechanical mean of pre-deforming the VHCRG so that the combination of the deflection caused by the DC index gradient is compensated by the mechanical deformation of the VHCRG. The second set of methods involves compensating the angular deflection caused by the DC index gradient by retracing the diffracted beam back onto itself and by re-diffracting from the same VHCRG. Apparatus for temporally stretching, amplifying and temporally compressing light pulses are disclosed that rely on the methods above.
    Type: Application
    Filed: July 13, 2009
    Publication date: April 29, 2010
    Inventors: Christophe Moser, Frank Havermeyer
  • Publication number: 20100027001
    Abstract: The invention disclosed here teaches methods to fabricate and utilize a non-dispersive holographic wavelength blocker. The invention enables the observation of the Raman signal near the excitation wavelength (˜9 cm?1) with the compactness of standard thin film/holographic notch filter. The novelty is contacting several individual volume holographic blocking notch filter (VHBF) to form one high optical density blocking filter without creating spurious multiple diffractions that degrade the filter performance. Such ultra-narrow-band VHBF can be used in existing compact Raman instruments and thus will help bring high-end research to a greater number of users at a lower cost.
    Type: Application
    Filed: December 3, 2008
    Publication date: February 4, 2010
    Inventors: Christophe Moser, Frank Havermeyer
  • Patent number: 7636376
    Abstract: A method is presented for shaping the spectral response of volume holographic grating elements by applying controlled thermal energy. The methods allow generating continuous or discontinuous grating periods from a fixed grating period. The methods are applicable to optical feedback into optical sources such as light emitting diodes, lasers and other general optical filtering applications.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: December 22, 2009
    Assignee: Ondax, Inc.
    Inventors: Christophe Moser, Frank Havermeyer, Lawrence Pokwah Ho
  • Publication number: 20090238217
    Abstract: A method is presented for shaping the spectral response of volume holographic grating elements by applying controlled thermal energy. The methods allow generating continuous or discontinuous grating periods from a fixed grating period. The methods are applicable to optical feedback into optical sources such as light emitting diodes, lasers and other general optical filtering applications.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 24, 2009
    Inventors: Christophe Moser, Frank Havermeyer, Lawrence Pokwah Ho