Patents by Inventor Frank J. Adams

Frank J. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8160113
    Abstract: Output pulses from an optical system having a seed source and an optical amplifier coupled to the seed source may be controlled by controlling a power of a seed signal from the seed source. The seed signal may be varied between a minimum value and a maximum value in a way that the seed signal exhibits one or more pulse bursts. Each pulse burst may contain one or more pulses. During an inter-pulse period between successive pulses within a pulse burst or between successive pulse bursts, the power of the seed signal may be adjusted to an intermediate value that is greater than the minimum value and less than the maximum value. The intermediate value is chosen to control a gain in the optical amplifier such that a pulse or pulse burst that follows the period exhibits a desired behavior.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: April 17, 2012
    Assignee: Mobius Photonics, Inc.
    Inventors: Frank J. Adams, Manuel J. Leonardo, David L. Klein
  • Publication number: 20110019705
    Abstract: Output pulses from an optical system having a seed source and an optical amplifier coupled to the seed source may be controlled by controlling a power of a seed signal from the seed source. The seed signal may be varied between a minimum value and a maximum value in a way that the seed signal exhibits one or more pulse bursts. Each pulse burst may contain one or more pulses. During an inter-pulse period between successive pulses within a pulse burst or between successive pulse bursts, the power of the seed signal may be adjusted to an intermediate value that is greater than the minimum value and less than the maximum value. The intermediate value is chosen to control a gain in the optical amplifier such that a pulse or pulse burst that follows the period exhibits a desired behavior.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Applicant: MOBIUS PHOTONICS, INC.
    Inventors: Frank J. Adams, Manuel J. Leonardo, David L. Klein
  • Publication number: 20090302831
    Abstract: Power consumption at a site is monitored. An electrical load is connected to a power source by an electrical conductor. A fuel-less energy producing device is electrically connected to a junction along the electrical conductor. A current sensor is electromagnetically coupled to the electrical conductor at a sensing position between the power source and the junction to create a current sensor signal. Sensed current and voltage signals are produced from the current sensor signal. A sensed phase relationship between the sensed signals is determined and compared to a baseline phase relationship to determine the direction of current flow through the conductor. A power source signal, based on the current flowing through the conductor at the sensing position, is created. With some examples a Rogowski type differential current sensor is used. In some examples a single current sensor is used.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Applicant: SunPower Corporation
    Inventors: Frank J. Adams, David L. Klein
  • Patent number: 7622912
    Abstract: Power consumption at a site is monitored. An electrical load is connected to a power source by an electrical conductor. A fuel-less energy producing device is electrically connected to a junction along the electrical conductor. A current sensor is electromagnetically coupled to the electrical conductor at a sensing position between the power source and the junction to create a current sensor signal. Sensed current and voltage signals are produced from the current sensor signal. A sensed phase relationship between the sensed signals is determined and compared to a baseline phase relationship to determine the direction of current flow through the conductor. A power source signal, based on the current flowing through the conductor at the sensing position, is created. With some examples a Rogowski type differential current sensor is used. In some examples a single current sensor is used.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 24, 2009
    Assignee: Sunpower Corporation
    Inventors: Frank J. Adams, David L. Klein
  • Patent number: 7352784
    Abstract: Methods and apparatus for managing thermal loads on a laser gain medium and for boosting the output power of a diode pumped laser are disclosed. The short-term average pumping power to the gain medium is increased, to provide a burst of pumping energy to the laser gain medium. A subsequent short-term reduction in the average pumping power then allows the gain medium to cool to a desired state steady level. The average pumping power is then increased to maintain this steady state level until the next burst is desired. For example, a pulse of current may be applied to a laser diode at a first current level I1 for a first time interval ?t1, where I1 exceeds a nominal current value Inom by an amount ?I1. The current to the laser diode is reduced to a second current level I2 for a second time interval ?t2, where Inom exceeds I2 by an amount ?I2. To balance the thermal load on the diode an integral of ?I1 over the time ?t1 is approximately equal in magnitude to an integral of ?I2 over the time ?t2.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: April 1, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Frank J. Adams, Mark A. Arbore, Werner H. Wiechmann
  • Patent number: 6807203
    Abstract: Methods and apparatus for calibrating a frequency difference between two or more lasers over an extended frequency range as well as optical signal generators that employ such an apparatus or method are disclosed. The lasers are tuned in coordination with respect to one or more readily characterized narrow frequency ranges to characterize one or more tuning parameters of each of the lasers over the extended frequency range. The apparatus may include first and second tuning controllers respectively coupled to the first and second lasers, an optical coupler optically coupled to the first laser and the second laser, a frequency detector coupled to the optical coupler and a controller coupled to the frequency detector and the temperature controllers. The controller may include a processor and a memory containing processor executable instructions for calibrating the two lasers in accordance with the method described above.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: October 19, 2004
    Assignee: Lightwave Electronics Corporation
    Inventor: Frank J. Adams
  • Publication number: 20030103213
    Abstract: Methods and apparatus for calibrating a frequency difference between two or more lasers over an extended frequency range as well as optical signal generators that employ such an apparatus or method are disclosed. The lasers are tuned in coordination with respect to one or more readily characterized narrow frequency ranges to characterize one or more tuning parameters of each of the lasers over the extended frequency range. The apparatus may include first and second tuning controllers respectively coupled to the first and second lasers, an optical coupler optically coupled to the first laser and the second laser, a frequency detector coupled to the optical coupler and a controller coupled to the frequency detector and the temperature controllers. The controller may include a processor and a memory containing processor executable instructions for calibrating the two lasers in accordance with the method described above.
    Type: Application
    Filed: December 5, 2001
    Publication date: June 5, 2003
    Inventor: Frank J. Adams
  • Patent number: 6009110
    Abstract: Pulse recovery times are reduced in a pulsed intracavity frequency-converted laser by operating the laser in a continuous-wave (c.w.) mode before operation in a Q-switched mode. C.w. light locally optically heats the frequency-conversion optics of the laser to facilitate phase-matching at the beginning of Q-switched operation. C.w. operation also reduces the amplitude of the first pulse of the subsequent firing sequence by expending population inversion accumulating in the gain medium. Operation in c.w. mode is initiated by ramping up the net optical gain in the laser cavity when the time elapsed since the latest emitted pulse exceeds 110% of the interpulse spacing prior to the latest pulse. Initiation of c.w. operation does not require external signals other than optionally a pulse trigger sequence from the user. Cavity optical losses may be increased immediately prior to the first pulse, for accumulating population inversion and increasing the first pulse to a desired level.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: December 28, 1999
    Assignee: Lightwave Electronics Corporation
    Inventors: Werner H. Wiechmann, Jeffrey D. Kmetec, Frank J. Adams
  • Patent number: D253275
    Type: Grant
    Filed: November 11, 1977
    Date of Patent: October 30, 1979
    Inventor: Frank J. Adams