Patents by Inventor Frank J. Turano

Frank J. Turano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150184184
    Abstract: The present invention relates to methods that may be used to improve or modify nutrient sensing, absorption, metabolism, root growth, stomatal conductance, N use efficiency, C and N metabolism, plant biomass production and seed yield. More specifically, this invention is related to the glutamate receptors (GLRs) and their role(s) in nutrient sensing, metabolism, regulation of growth, development, and yield.
    Type: Application
    Filed: October 14, 2014
    Publication date: July 2, 2015
    Inventors: Sivasubramanian Balasubramanian, Frank J. Turano
  • Patent number: 8889950
    Abstract: The present invention relates to methods that may be used to improve or modify nutrient sensing, absorption, metabolism, root growth, stomatal conductance, N use efficiency, C and N metabolism, plant biomass production and seed yield. More specifically, this invention is related to the glutamate receptors (GLRs) and their role(s) in nutrient sensing, metabolism, regulation of growth, development, and yield.
    Type: Grant
    Filed: July 28, 2007
    Date of Patent: November 18, 2014
    Assignee: The George Washington University
    Inventors: Sivasubramanian Balasubramanian, Frank J. Turano
  • Publication number: 20140237689
    Abstract: The present invention provides metabolic regulators, which are proteins (such as fusion proteins, truncated proteins or full-length proteins) that bind to specific metabolites and which can be used to control the availability of the metabolites in cells, particularly plant cells. Proteins of the invention include one or more metabolic regulator proteins, can be truncated or full length, can further comprise a transmembrane domain or lipoylation site or can further comprise a transit peptide. Metabolic regulators of the invention can be soluble, e.g., cytosolic soluble, can be anchored to a biological membrane or can be organelle targeted or apoplastic targeted. The present invention also provides nucleic acid molecules encoding the metabolic regulators, methods of making the nucleic acid molecules, methods for making transformed organisms, including plants, photosynthetic organisms, microbes, invertebrates, and vertebrates, and methods for controlling availability of metabolites to a host cell.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 21, 2014
    Applicant: PLANT SENSORY SYSTEMS, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Patent number: 8742204
    Abstract: The present invention provides metabolic regulators, which are proteins (such as fusion proteins, truncated proteins or full-length proteins) that bind to specific metabolites and which can be used to control the availability of the metabolites in cells, particularly plant cells. Proteins of the invention include one or more metabolic regulator proteins, can be truncated or full length, can further comprise a transmembrane domain or lipoylation site or can further comprise a transit peptide. Metabolic regulators of the invention can be soluble, e.g., cytosolic soluble, can be anchored to a biological membrane or can be organelle targeted or apoplastic targeted. The present invention also provides nucleic acid molecules encoding the metabolic regulators, methods of making the nucleic acid molecules, methods for making transformed organisms, including plants, photosynthetic organisms, microbes, invertebrates, and vertebrates, and methods for controlling availability of metabolites to a host cell.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: June 3, 2014
    Assignee: Plant Sensory Systems, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Publication number: 20140082761
    Abstract: The present invention describes an approach to increase plant growth and production. The invention describes methods for the use of functional sulfinoalanine decarboxylase (SAD) or the promiscuous enzyme activity of SAD in plants or algal cells. Transgenic plants will have increased plant growth, biomass, yield, and/or tolerance to biotic and/or abiotic stresses and could be used as a pharmaceutical, nutraceutical or as a supplement in animal feed.
    Type: Application
    Filed: April 17, 2012
    Publication date: March 20, 2014
    Applicant: PLANT SENSORY SYSTEMS, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Publication number: 20140068812
    Abstract: The present invention discloses regulatory sequences, promoters and terminators, and their use in plants. The regulatory sequences can be used to make gene constructs that include a gene not natively associated with the regulatory sequences. Methods to use the regulatory sequences with antisense constructs or functional RNAs are disclosed. Methods to use the regulatory sequences, promoter or terminator, independently of each other are also disclosed. Methods to use the regulatory sequences to improve plant growth and production such as increased biomass, increased yield and increased tolerance to abiotic or biotic stresses are also disclosed.
    Type: Application
    Filed: April 23, 2012
    Publication date: March 6, 2014
    Applicant: PLANT SENSORY SYSTEMS, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Patent number: 8581041
    Abstract: The present invention describes an alternative approach to increase GABA production in prokaryotes or eukaryotes, namely by the insertion of the putrescine catabolic pathway in organisms where the pathway does not exist or has not clearly been identified. The invention describes methods for the use of polynucleotides that encode functional putrescine aminotransferase (PAT) and gamma-aminobutyricaldehyde dehydrogenase (GABAlde DeHase) polypeptides in plants to increase GABA production. The preferred embodiment of the invention is in plants but other organisms may be used. Changes in GABA availability will improve growth and increase tolerance to biotic and abiotic stress.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: November 12, 2013
    Assignee: Plant Sensory Systems, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Patent number: 8581040
    Abstract: The present invention describes an alternative approach to increase GABA production in prokaryotes or eukaryotes, namely by the insertion of the putrescine catabolic pathway in organisms where the pathway does not exist or has not clearly been identified. The invention describes methods for the use of polynucleotides that encode functional putrescine aminotransferase (PAT) and gamma-aminobutyricaldehyde dehydrogenase (GABAlde DeHase) polypeptides in plants to increase GABA production. The preferred embodiment of the invention is in plants but other organisms may be used. Changes in GABA availability will improve growth and increase tolerance to biotic and abiotic stress.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Plant Sensory Systems, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Publication number: 20120222148
    Abstract: The present invention describes an approach to increase taurine or hypotaurine production in prokaryotes or eukaryotes. More particularly, the invention relates to genetic transformation of organisms with genes that encode proteins that catalyze the conversion of cysteine to taurine, methionine to taurine, cysteamine to taurine, or alanine to taurine. The invention describes methods for the use of polynucleotides that encode functional cysteine dioxygenase (CDO), cysteine dioxygenase (CDO) and sulfinoalanine decarboxylase (SAD) or glutamate decarboxylase (GAD), cysteamine dioxygenase (ADO), taurine-pyruvate aminotransferase (TPAT), TPAT and sulfoacetaldehyde acetyltransferase (SA), taurine dioxygenase (TDO) or the small (ssTDeHase) and large subunits of taurine dehydrogenase (lsTDeHase) polypeptides in plants to increase taurine, hypotaurine or taurine precursor production. The preferred embodiment of the invention is in plants but other organisms may be used.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 30, 2012
    Applicant: PLANT SENSORY SYSTEMS LLC
    Inventors: Frank J. Turano, Kathleen A. Turano, Peter S. Carlson, Alan M. Kinnersley
  • Patent number: 8106261
    Abstract: The present invention describes an alternative approach to increase GABA production in prokaryotes or eukaryotes, namely by the insertion of the putrescine catabolic pathway in organisms where the pathway does not exist or has not clearly been identified. The invention describes methods for the use of polynucleotides that encode functional putrescine aminotransferase (PAT) and gamma-aminobutyricaldehyde dehydrogenase (GABAlde DeHase) polypeptides in plants to increase GABA production. The preferred embodiment of the invention is in plants but other organisms may be used. Changes in GABA availability will improve growth and increase tolerance to biotic and abiotic stress.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 31, 2012
    Assignee: Plant Sensory Systems, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Publication number: 20090265805
    Abstract: The present invention relates to methods that may be used to improve or modify nutrient sensing, absorption, metabolism, root growth, stomatal conductance, N use efficiency, C and N metabolism, plant biomass production and seed yield. More specifically, this invention is related to the glutamate receptors (GLRs) and their role(s) in nutrient sensing, metabolism, regulation of growth, development, and yield.
    Type: Application
    Filed: July 28, 2007
    Publication date: October 22, 2009
    Inventors: SIVASUBRAMANIAN BALASUBRAMANIAN, FRANK J. TURANO
  • Publication number: 20090210967
    Abstract: This invention relates to compounds for improving plant growth and characteristics, improved modified plants, processes for obtaining the same, and improved methods of obtaining plant products, and specifically those concerning AtGLR1.1.
    Type: Application
    Filed: October 16, 2008
    Publication date: August 20, 2009
    Inventors: Frank J. Turano, Jiman Kang, John Quackenbush, Jason Shockey, Chen Zeng
  • Publication number: 20090077693
    Abstract: The present invention describes an alternative approach to increase GABA production in prokaryotes or eukaryotes, namely by the insertion of the putrescine catabolic pathway in organisms where the pathway does not exist or has not clearly been identified. The invention describes methods for the use of polynucleotides that encode functional putrescine aminotransferase (PAT) and gamma-aminobutyricaldehyde dehydrogenase (GABAlde DeHase) polypeptides in plants to increase GABA production. The preferred embodiment of the invention is in plants but other organisms may be used. Changes in GABA availability will improve growth and increase tolerance to biotic and abiotic stress.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 19, 2009
    Applicant: Plant Sensory Systems, LLC
    Inventors: Frank J. Turano, Kathleen A. Turano
  • Publication number: 20090025102
    Abstract: The invention provides isolated glutamate receptor associated nucleic acids and their encoded proteins for modulating nitrogen utilization efficiency in plants. The invention includes methods and compositions relating to altering nitrogen utilization and/or uptake in plants. The invention further provides recombinant expression cassettes, host cells, and transgenic plants.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 22, 2009
    Applicants: PIONEER HI-BRED INTERNATIONAL, INC., THE GEORGE WASHINGTON UNIVERSITY
    Inventors: HOWARD P. HERSHEY, MARY J. FRANK, CARL R. SIMMONS, FRANK J. TURANO
  • Publication number: 20030046732
    Abstract: The present invention relates to methods and compositions for regulating plant GABA production. More particularly, the invention relates to the use of polynucleotides that encode functional plant GAD enzymes for enhancing a plant's ability to produce. In various aspects, the invention provides methods of treating plants, vectors and other nucleic acid molecules useful for the treatments, and transformed plants better able to tolerate environmental or other plant stress.
    Type: Application
    Filed: November 7, 2001
    Publication date: March 6, 2003
    Inventors: Alan M. Kinnersley, Frank J. Turano