Patents by Inventor Frank Kroll

Frank Kroll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10751831
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 25, 2020
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 10654745
    Abstract: The present disclosure relates to a bonding glass which has improved water resistance and has a coefficient of thermal expansion ?(25-300) of from 14·10?6K?1 to 17·10?6K?1, comprising, in mol % on an oxide basis, 5-7 of B2O3, 10-14 of Al2O3, 36-43 of P2O5, 15-22 of Na2O, 12.5-20 of K2O, 2-6 of Bi2O3 and >0-6 of R oxide, where R oxide is an oxide selected from the group consisting of MnO2 and SiO2 and SnO2 and Ta2O5 and Nb2O5 and Fe2O3 and GeO2 and CaO. The bonding glass is free of PbO except for, at most, impurities. The bonding glass may have a glass transition temperature Tg of from 390° C. to 430° C. The present disclosure also relates to uses of this bonding glass.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 19, 2020
    Assignee: Schott AG
    Inventors: Ina Mitra, Miriam Kunze, Linda Johanna Bartelt, Sabrina Wimmer, Frank Kroll, Hauke Esemann, Bernd Hoppe, Jörg Witte
  • Patent number: 10622596
    Abstract: An electric energy production device or an electric energy storage device including a housing and a feed-through. The feed-through includes at least one body which has at least one opening through which the at least one conductor in an electrically insulating material is fed. The insulating material has a layer structure of at least two layers wherein a top layer being arranged towards the outside of the electric energy production device or the electric energy storage device consists of a sealing glass and an inner layer one of comprises and consists of a further glass material or glass ceramic material. The electrically insulated material is bonded with at least one of the base body and the conductor, wherein the sealing glass one of includes and consists of titanium glass.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: April 14, 2020
    Assignee: Schott AG
    Inventors: Ulf Dahlmann, Frank Kroll, Sabine Pichler-Wilhelm, Sabrina Wimmer, Jorg Witte
  • Publication number: 20190084871
    Abstract: The present disclosure relates to a bonding glass which has improved water resistance and has a coefficient of thermal expansion ?(25-300) of from 14·10?6K?1 to 17·10?6K?1, comprising, in mol % on an oxide basis, 5-7 of B2O3, 10-14 of Al2O3, 36-43 of P2O5, 15-22 of Na2O, 12.5-20 of K2O, 2-6 of Bi2O3 and >0-6 of R oxide, where R oxide is an oxide selected from the group consisting of MnO2 and SiO2 and SnO2 and Ta2O5 and Nb2O5 and Fe2O3 and GeO2 and CaO. The bonding glass is free of PbO except for, at most, impurities. The bonding glass may have a glass transition temperature Tg of from 390° C. to 430° C. The present disclosure also relates to uses of this bonding glass.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 21, 2019
    Applicant: Schott AG
    Inventors: Ina Mitra, Miriam Kunze, Linda Johanna Bartelt, Sabrina Wimmer, Frank Kroll, Hauke Esemann, Bernd Hoppe, Jörg Witte
  • Patent number: 10224521
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body and is hermetically sealed with the housing part such that the helium leakage rate is smaller than 1*10?8 mbar l/sec.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 5, 2019
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Bartelt
  • Publication number: 20180342714
    Abstract: An electric energy production device or an electric energy storage device including a housing and a feed-through. The feed-through includes at least one body which has at least one opening through which the at least one conductor in an electrically insulating material is fed. The insulating material has a layer structure of at least two layers wherein a top layer being arranged towards the outside of the electric energy production device or the electric energy storage device consists of a sealing glass and an inner layer one of comprises and consists of a further glass material or glass ceramic material. The electrically insulated material is bonded with at least one of the base body and the conductor, wherein the sealing glass one of includes and consists of titanium glass.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 29, 2018
    Applicant: Schott AG
    Inventors: Ulf Dahlmann, Frank Kroll, Sabine Pichler-Wilhelm, Sabrina Wimmer, Jorg Witte
  • Patent number: 10044010
    Abstract: A feed-through includes at least one main body which has at least one opening through which at least one conductor in an electrically insulating material comprising or consisting of a sealing glass is fed, wherein the main body comprises or consists of a light metal and/or a light metal alloy, with an integral bond being formed between the light metal and/or the conductor and the sealing glass, wherein the sealing glass comprises or consists of a titanate glass and has only a small phosphate proportion.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 7, 2018
    Assignee: Schott AG
    Inventors: Ulf Dahlmann, Frank Kroll, Sabine Pichler-Wilhelm, Sabrina Wimmer, Jörg Witte
  • Publication number: 20180178312
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 9799860
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5; 0-14% Al2O3; 2-10% B2O3; 0-30% Na2O; 0-20% M2O, with M being K, Cs or Rb; 0-35% Li2O; 0-20% BaO; and 0-10% Bi2O3, the glass material being free of lead except for contaminants.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 24, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20170149028
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body and is hermetically sealed with the housing part such that the helium leakage rate is smaller than 1*10?8 mbar l/sec.
    Type: Application
    Filed: December 20, 2016
    Publication date: May 25, 2017
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Bartelt
  • Patent number: 9616518
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 11, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20170098803
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5; 0-14% Al2O3; 2-10% B2O3; 0-30% Na2O; 0-20% M2O, with M being K, Cs or Rb; 0-35% Li2O; 0-20% BaO; and 0-10% Bi2O3, the glass material being free of lead except for contaminants.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 9539665
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5, for example 39-48%; 0-14% Al2O3, for example 2-12%; 2-10% B2O3, for example 4-8%; 0-30% Na2O, for example 0-20%; 0-20% M2O, for example 12-20%, wherein M is K, Cs or Rb; 0-10% PbO, for example 0-9%; 0-45% Li2O, for example 0-40% or 17-40%; 0-20% BaO, for example 5-20%; 0-10% Bi2O3, for example 1-5% or 2-5%.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: January 10, 2017
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Patent number: 9527157
    Abstract: A feed-through has a base body, for example in the form of a disk-shaped metal part. The base body includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body includes a material having a low melting point, such as a light metal, and the glass or glass ceramic material is selected in such a manner that the melting temperature thereof is lower than the melting temperature of the material of the base body.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: December 27, 2016
    Assignee: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20160036016
    Abstract: A feed-through includes at least one main body which has at least one opening through which at least one conductor in an electrically insulating material comprising or consisting of a sealing glass is fed, wherein the main body comprises or consists of a light metal and/or a light metal alloy, with an integral bond being formed between the light metal and/or the conductor and the sealing glass, wherein the sealing glass comprises or consists of a titanate glass and has only a small phosphate proportion.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Applicant: Schott AG
    Inventors: Ulf Dahlmann, Frank Kroll, Sabine Pichler-Wilhelm, Sabrina Wimmer, Jörg Witte
  • Publication number: 20130337316
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 19, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330605
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330603
    Abstract: A feed-through has a base body, for example in the form of a disk-shaped metal part. The base body includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body includes a material having a low melting point, such as a light metal, and the glass or glass ceramic material is selected in such a manner that the melting temperature thereof is lower than the melting temperature of the material of the base body.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330599
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5, for example 39-48%; 0-14% Al2O3, for example 2-12%; 2-10% B2O3, for example 4-8%; 0-30% Na2O, for example 0-20%; 0-20% Li2O, for example 12-20%, wherein M is K, Cs or Rb; 0-10% PbO, for example 0-9%; 0-45% Li2O, for example 0-40% or 17-40%; 0-20% BaO, for example 5-20%; 0-10% Bi2O3, for example 1-5% or 2-5%.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330604
    Abstract: A feed-through, in particular a feed-through which passes through a housing component of a housing, for example a battery housing, such as a battery cell housing. The housing component includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, is guided. The pin-shaped conductor is at least partially surrounded by an insulator, for example made of a glass or a glass ceramic material. The at least one conductor connection, for example of the essentially pin-shaped conductor and/or of the housing component with the insulator, which is a glass or a glass ceramic material, is formed, the connection being an ultrasonic welding.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes