Patents by Inventor Frank L. Pasquale

Frank L. Pasquale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11072860
    Abstract: Methods and apparatus for use of a fill on demand ampoule are disclosed. The fill on demand ampoule may refill an ampoule with precursor concurrent with the performance of other deposition processes. The fill on demand may keep the level of precursor within the ampoule at a relatively constant level. The level may be calculated to result in an optimum head volume. The fill on demand may also keep the precursor at a temperature near that of an optimum precursor temperature. The fill on demand may occur during parts of the deposition process where the agitation of the precursor due to the filling of the ampoule with the precursor minimally effects the substrate deposition. Substrate throughput may be increased through the use of fill on demand.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: July 27, 2021
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Tuan Nguyen, Eashwar Ranganathan, Shankar Swaminathan, Adrien LaVoie, Chloe Baldasseroni, Ramesh Chandrasekharan, Frank L. Pasquale, Jennifer L. Petraglia
  • Patent number: 10741365
    Abstract: A low volume showerhead in a semiconductor processing apparatus can include a porous baffle to improve the flow uniformity and purge time during atomic layer deposition. The showerhead can include a plenum volume, one or more gas inlets in fluid communication with the plenum volume, a faceplate including a plurality of first through-holes for distributing gas onto a substrate in the semiconductor processing apparatus, and a porous baffle positioned in a region between the plenum volume and the one or more gas inlets. The one or more gas inlets can include a stem having a small volume to improve purge time. The baffle can be porous and positioned between the stem and the plenum volume to improve flow uniformity and avoid jetting.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: August 11, 2020
    Assignee: Lam Research Corporation
    Inventors: Ramesh Chandrasekharan, Saangrut Sangplung, Shankar Swaminathan, Frank L. Pasquale, Hu Kang, Adrien LaVoie
  • Patent number: 10679848
    Abstract: Methods and apparatuses for depositing films in high aspect ratio features and trenches using a post-dose treatment operation during atomic layer deposition are provided. Post-dose treatment operations are performed after adsorbing precursors onto the substrate to remove adsorbed precursors at the tops of features prior to converting the adsorbed precursors to a silicon-containing film. Post-dose treatments include exposure to non-oxidizing gas, exposure to non-oxidizing plasma, and exposure to ultraviolet radiation.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: June 9, 2020
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Ishtak Karim, Jun Qian, Frank L. Pasquale, Bart J. van Schravendijk
  • Patent number: 10541117
    Abstract: Heights of carrier ring supports are increased at a side of a wafer that is located closer to a spindle of a plasma chamber. The heights are increased relative to a height of a carrier ring support that is located closer to side walls of the plasma chamber. The increase in the height results in an increase in thickness of a thin film deposited on the wafer to further achieve uniformity in thickness of the thin film across a top surface of the wafer.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: January 21, 2020
    Assignee: Lam Research Corporation
    Inventors: Shankar Swaminathan, Pramod Subramonium, Frank L. Pasquale, Jeongseok Ha, Chloe Baldasseroni
  • Patent number: 10526700
    Abstract: The present inventors have conceived of a multi-stage process gas delivery system for use in a substrate processing apparatus. In certain implementations, a first process gas may first be delivered to a substrate in a substrate processing chamber. A second process gas may be delivered, at a later time, to the substrate to aid in the even dosing of the substrate. Delivery of the first process gas and the second process gas may cease at the same time or may cease at separate times.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: January 7, 2020
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Hu Kang, Adrien LaVoie, Yi Chung Chiu, Frank L. Pasquale, Jun Qian, Chloe Baldasseroni, Shankar Swaminathan, Karl F. Leeser, David Charles Smith, Wei-Chih Lai
  • Patent number: 10418236
    Abstract: Dielectric composite films characterized by a dielectric constant (k) of less than about 7 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers. The dielectric composite film in one embodiment includes Al, Si, and O and has a thickness of between about 10-100 ?. The dielectric composite film can reside between two layers of inter-layer dielectric, and may be in contact with metal layers. An apparatus for depositing such dielectric composite films includes a process chamber, a conduit for delivering an aluminum containing precursor to the process chamber, a second conduit for delivering a silicon-containing precursor to the process chamber and a controller having program instructions for depositing the dielectric composite film from these precursors, e.g., by reacting the precursors adsorbed to the substrate with an oxygen-containing species.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 17, 2019
    Assignee: Lam Research Corporation
    Inventors: Kapu Sirish Reddy, Nagraj Shankar, Shankar Swaminathan, Meliha Gozde Rainville, Frank L. Pasquale
  • Patent number: 10407773
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates employing the use of a secondary purge. The methods may include flowing a film precursor into a processing chamber and adsorbing the film precursor onto a substrate in the processing chamber such that the precursor forms an adsorption-limited layer on the substrate. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed precursor by purging the processing chamber with a primary purge gas, and thereafter reacting adsorbed film precursor while a secondary purge gas is flowed into the processing chamber, resulting in the formation of a film layer on the substrate. The secondary purge gas may include a chemical species having an ionization energy and/or a disassociation energy equal to or greater than that of O2. Also disclosed are apparatuses which implement the foregoing processes.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 10, 2019
    Assignee: Lam Research Corporation
    Inventors: Adrien LaVoie, Hu Kang, Purushottam Kumar, Shankar Swaminathan, Jun Qian, Frank L. Pasquale, Chloe Baldasseroni
  • Publication number: 20190040528
    Abstract: The present inventors have conceived of a multi-stage process gas delivery system for use in a substrate processing apparatus. In certain implementations, a first process gas may first be delivered to a substrate in a substrate processing chamber. A second process gas may be delivered, at a later time, to the substrate to aid in the even dosing of the substrate. Delivery of the first process gas and the second process gas may cease at the same time or may cease at separate times.
    Type: Application
    Filed: September 13, 2018
    Publication date: February 7, 2019
    Inventors: Purushottam Kumar, Hu Kang, Adrien LaVoie, Yi Chung Chiu, Frank L. Pasquale, Jun Qian, Chloe Baldasseroni, Shankar Swaminathan, Karl F. Leeser, David Charles Smith, Wei-Chih Lai
  • Patent number: 10192742
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 29, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Publication number: 20180342389
    Abstract: Dielectric composite films characterized by a dielectric constant (k) of less than about 7 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers. The dielectric composite film in one embodiment includes Al, Si, and O and has a thickness of between about 10-100 ?. The dielectric composite film can reside between two layers of inter-layer dielectric, and may be in contact with metal layers. An apparatus for depositing such dielectric composite films includes a process chamber, a conduit for delivering an aluminum containing precursor to the process chamber, a second conduit for delivering a silicon-containing precursor to the process chamber and a controller having program instructions for depositing the dielectric composite film from these precursors, e.g., by reacting the precursors adsorbed to the substrate with an oxygen-containing species.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 29, 2018
    Inventors: Kapu Sirish Reddy, Nagraj Shankar, Shankar Swaminathan, Meliha Gozde Rainville, Frank L. Pasquale
  • Publication number: 20180323057
    Abstract: Methods and apparatuses for depositing films in high aspect ratio features and trenches using a post-dose treatment operation during atomic layer deposition are provided. Post-dose treatment operations are performed after adsorbing precursors onto the substrate to remove adsorbed precursors at the tops of features prior to converting the adsorbed precursors to a silicon-containing film. Post-dose treatments include exposure to non-oxidizing gas, exposure to non-oxidizing plasma, and exposure to ultraviolet radiation.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Purushottam Kumar, Adrien LaVoie, Ishtak Karim, Jun Qian, Frank L. Pasquale, Bart J. van Schravendijk
  • Patent number: 10100407
    Abstract: The present inventors have conceived of a multi-stage process gas delivery system for use in a substrate processing apparatus. In certain implementations, a first process gas may first be delivered to a substrate in a substrate processing chamber. A second process gas may be delivered, at a later time, to the substrate to aid in the even dosing of the substrate. Delivery of the first process gas and the second process gas may cease at the same time or may cease at separate times.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 16, 2018
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Hu Kang, Adrien LaVoie, Yi Chung Chiu, Frank L. Pasquale, Jun Qian, Chloe Baldasseroni, Shankar Swaminathan, Karl F. Leeser, David Charles Smith, Wei-Chih Lai
  • Patent number: 10062563
    Abstract: Methods and apparatuses for depositing films in high aspect ratio features and trenches using a post-dose treatment operation during atomic layer deposition are provided. Post-dose treatment operations are performed after adsorbing precursors onto the substrate to remove adsorbed precursors at the tops of features prior to converting the adsorbed precursors to a silicon-containing film. Post-dose treatments include exposure to non-oxidizing gas, exposure to non-oxidizing plasma, and exposure to ultraviolet radiation.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 28, 2018
    Assignee: Lam Research Corporation
    Inventors: Purushottam Kumar, Adrien LaVoie, Ishtak Karim, Jun Qian, Frank L. Pasquale, Bart J. van Schravendijk
  • Patent number: 10049869
    Abstract: Dielectric composite films characterized by a dielectric constant (k) of less than about 7 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers. The composite films in one embodiment include at least two elements selected from the group consisting of Al, Si, and Ge, and at least one element selected from the group consisting of O, N, and C. In one embodiment the composite film includes Al, Si and O. In one implementation, a substrate containing an exposed dielectric layer (e.g., a ULK dielectric) and an exposed metal layer is contacted with an aluminum-containing compound (such as trimethylaluminum) and, sequentially, with a silicon-containing compound. Adsorbed compounds are then treated with an oxygen-containing plasma (e.g., plasma formed in a CO2-containing gas) to form a film that contains Al, Si, and O.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 14, 2018
    Assignee: Lam Research Corporation
    Inventors: Kapu Sirish Reddy, Nagraj Shankar, Shankar Swaminathan, Meliha Gozde Rainville, Frank L. Pasquale
  • Patent number: 10049911
    Abstract: A method for performing temporally pulsed chemical vapor deposition (CVD) is provided, including: providing a first reactant configured to adsorb on exposed surfaces of a substrate in a self-limiting manner, the first reactant being provided at a partial pressure so that the first reactant diffuses into a gap feature of the substrate; performing a first purge operation, the first purge operation being configured to partially purge the first reactant, so that gas phase first reactant species remain in the gap feature; providing a second reactant to the process chamber, the second reactant being configured to react with the first reactant to form a film product, including reaction of the provided second reactant with the adsorbed first reactant species, and reaction of the provided second reactant with the gas phase first reactant species in the gap feature; performing a second purge operation.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: August 14, 2018
    Assignee: Lam Research Corporation
    Inventors: Shankar Swaminathan, Frank L. Pasquale
  • Patent number: 10043657
    Abstract: The embodiments herein relate to methods and apparatus for depositing an encapsulation layer over memory stacks in MRAM and PCRAM applications. The encapsulation layer is a titanium dioxide (TiO2) layer deposited through an atomic layer deposition reaction. In some embodiments, the encapsulation layer may be deposited as a bilayer, with an electrically favorable layer formed atop a protective layer. In certain implementations, gaps between neighboring memory stacks may be filled with titanium oxide, for example through an atomic layer deposition reaction or a chemical vapor deposition reaction.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 7, 2018
    Assignee: Lam Research Corporation
    Inventors: Shankar Swaminathan, Frank L. Pasquale, Adrien LaVoie
  • Publication number: 20180158683
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 7, 2018
    Applicant: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Publication number: 20180096886
    Abstract: Dielectric composite films characterized by a dielectric constant (k) of less than about 7 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers. The composite films in one embodiment include at least two elements selected from the group consisting of Al, Si, and Ge, and at least one element selected from the group consisting of O, N, and C. In one embodiment the composite film includes Al, Si and O. In one implementation, a substrate containing an exposed dielectric layer (e.g., a ULK dielectric) and an exposed metal layer is contacted with an aluminum-containing compound (such as trimethylaluminum) and, sequentially, with a silicon-containing compound. Adsorbed compounds are then treated with an oxygen-containing plasma (e.g., plasma formed in a CO2-containing gas) to form a film that contains Al, Si, and O.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Kapu Sirish Reddy, Nagraj Shankar, Shankar Swaminathan, Meliha Gozde Rainville, Frank L. Pasquale
  • Publication number: 20180082886
    Abstract: A method for performing temporally pulsed chemical vapor deposition (CVD) is provided, including: providing a first reactant configured to adsorb on exposed surfaces of a substrate in a self-limiting manner, the first reactant being provided at a partial pressure so that the first reactant diffuses into a gap feature of the substrate; performing a first purge operation, the first purge operation being configured to partially purge the first reactant, so that gas phase first reactant species remain in the gap feature; providing a second reactant to the process chamber, the second reactant being configured to react with the first reactant to form a film product, including reaction of the provided second reactant with the adsorbed first reactant species, and reaction of the provided second reactant with the gas phase first reactant species in the gap feature; performing a second purge operation.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Shankar Swaminathan, Frank L. Pasquale
  • Patent number: 9905423
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 27, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit