Patents by Inventor Frank P. Spadafora

Frank P. Spadafora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7617863
    Abstract: A continuous casting furnace includes a temperature control mechanism for controlling the temperature of a metal casting as it exits a continuous casting mold in order to provide improved characteristics of the metal casting. The temperature control mechanism includes a temperature sensor for sensing the temperature of the metal casting, and a heat source and cooling device for respectively heating and cooling the metal casting in light of the temperature of the metal casting. A control unit determines if the temperature of the metal casting is within a predetermined range and controls the heat source and cooling device accordingly. The heat source may double as a cooling device or the cooling device may be separate from the heat source.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: November 17, 2009
    Assignee: RTI International Metals, Inc.
    Inventors: Kuang-O Yu, Frank P. Spadafora, Michael P. Jacques
  • Patent number: 7484549
    Abstract: A seal for a continuous casting furnace having a melting chamber with a mold therein for producing a metal cast includes a passage between the melting chamber and external atmosphere. As the cast moves through the passage, the cast outer surface and the passage inner surface define therebetween a reservoir for containing liquid glass or other molten material to prevent the external atmosphere from entering the melting chamber. Particulate material fed into the reservoir is melted by heat from the cast to form the molten material. The molten material coats the cast as it moves through the passage and solidifies to form a coating to protect the hot cast from reacting with the external atmosphere. Preferably, the mold has an inner surface with a cross-sectional shape to define a cross-sectional shape of the cast outer surface whereby these cross-sectional shapes are substantially the same as a cross-sectional shape of the passage inner surface.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 3, 2009
    Assignee: RMI Titanium Company
    Inventors: Michael P. Jacques, Frank P. Spadafora, Kuang-O Yu, Brian W. Martin
  • Patent number: 7484548
    Abstract: A seal for a continuous casting furnace having a melting chamber with a mold therein for producing a metal cast includes a passage between the melting chamber and external atmosphere. As the cast moves through the passage, the cast outer surface and the passage inner surface define therebetween a reservoir for containing liquid glass or other molten material to prevent the external atmosphere from entering the melting chamber. Particulate material fed into the reservoir is melted by heat from the cast to form the molten material. The molten material coats the cast as it moves through the passage and solidifies to form a coating to protect the hot cast from reacting with the external atmosphere. Preferably, the mold has an inner surface with a cross-sectional shape to define a cross-sectional shape of the cast outer surface whereby these cross-sectional shapes are substantially the same as a cross-sectional shape of the passage inner surface.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: February 3, 2009
    Assignee: RMI Titanium Company
    Inventors: Michael P. Jacques, Frank P. Spadafora, Kuang-O Yu, Brian W. Martin
  • Publication number: 20080035298
    Abstract: A continuous casting furnace includes a temperature control mechanism for controlling the temperature of a metal cast as it exits a continuous casting mold in order to provide improved characteristics of the metal cast. The temperature control mechanism includes a temperature sensor for sensing the temperature of the metal cast, and a heat source and cooling device for respectively heating and cooling the metal cast in light of the temperature of the metal cast. A control unit determines if the temperature of the metal cast is within a predetermined range and controls the heat source and cooling device accordingly. The heat source may double as a cooling device or the cooling device may be separate from the heat source.
    Type: Application
    Filed: August 11, 2006
    Publication date: February 14, 2008
    Applicant: RMI Titanium Company
    Inventors: Kuang-O Yu, Frank P. Spadafora, Michael P. Jacques
  • Patent number: 7322397
    Abstract: A seal for a continuous casting furnace having a melting chamber with a mold therein for producing a metal cast includes a passage between the melting chamber and external atmosphere. As the cast moves through the passage, the cast outer surface and the passage inner surface define therebetween a reservoir for containing liquid glass or other molten material to prevent the external atmosphere from entering the melting chamber. Particulate material fed into the reservoir is melted by heat from the cast to form the molten material. The molten material coats the cast as it moves through the passage and solidifies to form a coating to protect the hot cast from reacting with the external atmosphere. Preferably, the mold has an inner surface with a cross-sectional shape to define a cross-sectional shape of the cast outer surface whereby these cross-sectional shapes are substantially the same as a cross-sectional shape of the passage inner surface.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: January 29, 2008
    Assignee: RMI Titanium Company
    Inventors: Michael P. Jacques, Frank P. Spadafora, Kuang-O Yu, Brian W. Martin
  • Patent number: 6983007
    Abstract: A method of manufacturing titanium electrodes in a vacuum arc remelting furnace as well as a reusable header for use in the remelting process is disclosed. An electrode may be attached to the reusable header and remelted in the furnace a number of times until a final ingot of the desired metallurgical quality is produced. The header and electrode are provided with a complimentarily shaped interlocking recess and projection to secure them together. The electrode may alternatively be integrally formed with a starter stub that includes a recess or projection that interlocks with a complimentarily shaped projection or recess on the header. At least a section of the header is made of the same metal as the electrode to be melted to reduce contamination of the ingot being formed in the furnace. Alternatively the starter stub is made from the same metal as the electrode.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: January 3, 2006
    Assignee: RMI Titanium Company
    Inventors: Louis J. Barto, Frank P. Spadafora
  • Patent number: 6561259
    Abstract: A method for hearthless processing of a solid metallic material consisting essentially of titanium or other metal or alloy thereof which includes providing a solid metal block having a processing surface and a base surface and consisting essentially of titanium or a metal, forming a pool of molten metal on the processing surface of the solid metal block provided in step, adding the metallic material to be processed to the pool of molten metal formed in step, and melting the metallic material to be processed, and removing metallic material melted in step from the pool of molten metal.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: May 13, 2003
    Assignee: RMI Titanium Company
    Inventors: Frank P. Spadafora, Kuang-O Yu
  • Publication number: 20020189404
    Abstract: An improved process for successful and homogeneous incorporation of ruthenium and iridium into titanium and titanium alloy melts, ingots, and castings via traditional melting processes (e.g., VAR and cold-hearth) has been developed. This result is achieved through the use of low-melting point Ti-Ru or Ti-Ir binary master alloys within the general composition range of ≦45 wt. % Ru and with a preferred composition of Ti-(15-40 wt. % Ru), or within the general composition range of ≦61 wt. % Ir and with a preferred composition of TI-(20-58 wt. % Ir). Primary features are its lower melting point than pure titanium, lower density than pure Ru and Ir metals, and the ability to be readily processed into granular or powder forms.
    Type: Application
    Filed: May 7, 2002
    Publication date: December 19, 2002
    Inventors: Ronald W. Schutz, Kuang-O Yu, Richard L. Porter, Frank P. Spadafora
  • Publication number: 20020179278
    Abstract: A method for hearthless processing of a solid metallic material consisting essentially of titanium or other metal or alloy thereof which includes providing a solid metal block having a processing surface and a base surface and consisting essentially of titanium or a metal, forming a pool of molten metal on the processing surface of the solid metal block provided in step, adding the metallic material to be processed to the pool of molten metal formed in step, and melting the metallic material to be processed, and removing metallic material melted in step from the pool of molten metal.
    Type: Application
    Filed: October 19, 2001
    Publication date: December 5, 2002
    Inventors: Frank P. Spadafora, Kuang-O Yu
  • Patent number: 6409792
    Abstract: An improved process for successful and homogeneous incorporation of ruthenium and iridium into titanium and titanium alloy melts, ingots, and castings via traditional melting processes (e.g., VAR and cold-hearth) has been developed. This result is achieved through the use of low-melting point Ti-Ru or Ti—Ir binary master alloys within the general composition range of ≦45 wt. % Ru and with a preferred composition of Ti-(15-40 wt. % Ru), or within the general composition range of ≦61 wt. % Ir and with a preferred composition of TI-(20-58 wt. % Ir). Primary features are its lower melting point than pure titanium, lower density than pure Ru and Ir metals, and the ability to be readily processed into granular or powder forms.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: June 25, 2002
    Assignee: RMI Titanium Company
    Inventors: Ronald W. Schutz, Kuang-O Yu, Richard L. Porter, Frank P. Spadafora