Patents by Inventor Frank S. Hintermaier

Frank S. Hintermaier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7005303
    Abstract: A low temperature CVD process for deposition of bismuth-containing ceramic thin films suitable for integration to fabricate ferroelectric memory devices. The bismuth-containing film can be formed using a tris(?-diketonate) bismuth precursor. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: February 28, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Publication number: 20040209384
    Abstract: A low temperature CVD process for deposition of bismuth-containing ceramic thin films suitable for integration to fabricate ferroelectric memory devices. The bismuth-containing film can be formed using a tris(&bgr;-diketonate) bismuth precursor. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Application
    Filed: April 30, 2004
    Publication date: October 21, 2004
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6787186
    Abstract: A method of forming a metal oxide ceramic layer is provided, in which a gaseous flow of a vaporized solution of a precursor organo metal compound in a volatile organic solvent, e.g., plus an oxidizing gas, in the presence of a protonating additive substance and/or activating agent in gaseous state, is conducted into contact with a surface of a substrate. The operation is effected under vacuum pressure at a thermal decomposition temperature for converting the precursor compound to its corresponding metal oxide, e.g., having the same oxidation state as in the precursor compound. The additive substance is present in an amount sufficient for facilitating thermal decomposition of the precursor compound and for controlling the in situ oxidation state of the deposited metal and the amount of oxygen in the formed layer, e.g., while suppressing formation of volatile intermediates and of vacancies in the formed layer.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: September 7, 2004
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventor: Frank S. Hintermaier
  • Patent number: 6730523
    Abstract: A low temperature CVD process using a tris (&bgr;-diketonate) bismuth precursor for deposition of bismuth ceramic thin films suitable for integration to fabricate ferroelectric memory devices. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: May 4, 2004
    Assignees: Advanced Technology Materials, Inc., Siemens Aktiengesellschaft
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6713797
    Abstract: A non-volatile memory cell wherein the capacitor comprises a Bi-based metal oxide having a crystallographic texture to produce high switchable polarization.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: March 30, 2004
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies North America Corp.
    Inventors: Debra A. Desrochers, Bryan C. Hendrix, Jeffrey F. Roeder, Frank S. Hintermaier
  • Patent number: 6693318
    Abstract: A barrier layer is provided to prevent the diffusion of excess mobile specie from a metal oxide ceramic into the substrate. The barrier layer is provided below the metal oxide ceramic, separating it from the substrate below.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: February 17, 2004
    Assignee: Infineon Technologies North America
    Inventor: Frank S. Hintermaier
  • Patent number: 6500489
    Abstract: Chemical vapor deposition is used to form a film of Bi oxide, Sr oxide, and Ta oxide on a heated substrate by decomposing the precursors of these oxides at the surface of the substrate. The precursor of Bi oxide is a Bi complex which includes at least one alkoxide group and is decomposed and deposited at a temperature lower than 450° C. The film of Bi, Sr, and Ta oxides obtained by low-temperature CVD is predominantly non-ferroelectric, but can be converted into a ferroelectric film by a subsequent heating process.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: December 31, 2002
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventors: Frank S. Hintermaier, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6444264
    Abstract: A solvent composition for liquid delivery chemical vapor deposition of metal organic precursors, to form metal-containing films such as SrBi2Ta2O9 (SBT) films for memory devices. An SBT film may be formed using precursors such as Sr(thd)2(tetraglyme), Ta(OiPr)4(thd) and Bi(thd)3 which are dissolved in a solvent medium comprising one or more alkanes. Specific alkane solvent compositions may advantageously used for MOCVD of metal organic compound(s) such as &bgr;-diketonate compounds or complexes, compound(s) including alkoxide ligands, and compound(s) including alkyl and/or aryl groups at their outer (molecular) surface, or compound(s) including other ligand coordination species and specific metal constituents.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: September 3, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Thomas H. Baum
  • Patent number: 6350643
    Abstract: Reduced diffusion of excess mobile specie from a metal oxide ceramic is achieved by tailoring the composition an/or deposition parameters. A barrier layer which reacts with the excess mobile specie is provided below the metal oxide ceramic to prevent or reduce the diffusion of the excess mobile specie through the bottom electrode and into the substrate.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: February 26, 2002
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventors: Frank S. Hintermaier, Jeffrey F. Roeder, Bryan C. Hendrix, Debra A. Desrochers, Thomas H. Baum
  • Publication number: 20010041374
    Abstract: A low temperature CVD process using a tris (&bgr;-diketonate) bismuth precursor for deposition of bismuth ceramic thin films suitable for integration to fabricate ferroelectric memory devices. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Application
    Filed: June 1, 2001
    Publication date: November 15, 2001
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6303391
    Abstract: A low temperature CVD process using a tris (&bgr;-diketonate) bismuth precursor for deposition of bismuth ceramic thin films suitable for integration to fabricate ferroelectric memory devices. Films of amorphous SBT can be formed by CVD and then ferroannealed to produce films with Aurivillius phase composition having superior ferroelectric properties suitable for manufacturing high density FRAMs.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: October 16, 2001
    Assignees: Advanced Technology Materials, Inc., Siemens Aktiengesellschaft
    Inventors: Frank S. Hintermaier, Christine Dehm, Wolfgang Hoenlein, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Publication number: 20010004470
    Abstract: A solvent composition for liquid delivery chemical vapor deposition of metal organic precursors, to form metal-containing films such as SrBi2Ta2O9 (SBT) films for memory devices. An SBT film may be formed using precursors such as Sr(thd)2(tetraglyme), Ta(OiPr)4(thd) and Bi(thd)3 which are dissolved in a solvent medium comprising one or more alkanes. Specific alkane solvent compositions may advantageously used for MOCVD of metal organic compound(s) such as &bgr;-diketonate compounds or complexes, compound(s) including alkoxide ligands, and compound(s) including alkyl and/or aryl groups at their outer (molecular) surface, or compound(s) including other ligand coordination species and specific metal constituents.
    Type: Application
    Filed: January 30, 2001
    Publication date: June 21, 2001
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Thomas H. Baum
  • Patent number: 6214105
    Abstract: A solvent composition for liquid delivery chemical vapor deposition of metal organic precursors, to form metal-containing films such as SrBi2Ta2O9 (SBT) films for memory devices. An SBT film may be formed using precursors such as Sr(thd)2(tetraglyme), Ta(OiPr)4(thd) and Bi(thd)3 which are dissolved in a solvent medium comprising one or more alkanes. Specific alkane solvent compositions may advantageously used for MOCVD of metal organic compound(s) such as &bgr;-diketonate compounds or complexes, compound(s) including alkoxide ligands, and compound(s) including alkyl and/or aryl groups at their outer (molecular) surface, or compound(s) including other ligand coordination species and specific metal constituents.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: April 10, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Thomas H. Baum
  • Patent number: 6204158
    Abstract: A scavenger layer is provided to prevent the diffusion of an excess mobile specie from a metal oxide ceramic into unwanted parts of a device. The scavenger layer is provided above the metal oxide ceramic. As the excess mobile specie diffuses out of the metal oxide ceramic, it migrates toward the scavenger layer and reacts with it. The reaction consumes the excess mobile specie.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: March 20, 2001
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies North America Corp.
    Inventors: Bryan C. Hendrix, Frank S. Hintermaier, Jeffrey F. Roeder, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6180420
    Abstract: Chemical vapor deposition is used to form a film of Bi oxide, Sr oxide, and Ta oxide on a heated substrate by decomposing the precursors of these oxides at the surface of the substrate. The precursor of Bi oxide is a Bi complex which includes at least one carboxylate group and is decomposed and deposited at a temperature lower than 450° C. The film of Bi, Sr, and Ta oxides obtained by low-temperature CVD is predominantly non-ferroelectric, but can be converted into a ferroelectric film by a subsequent heating process.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: January 30, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6177135
    Abstract: Chemical vapor deposition is used to form a film of Bi oxide, Sr oxide, and Ta oxide on a heated substrate by decomposing the precursors of these oxides at the surface of the substrate. The precursor of Bi oxide is a Bi complex which includes at least one amide group and is decomposed and deposited at a temperature lower than 450° C. The film of Bi, Sr, and Ta oxides obtained by low-temperature CVD is predominantly non-ferroelectric, but can be converted into a ferroelectric film by a subsequent heating process.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: January 23, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Peter C. Van Buskirk, Jeffrey F. Roeder, Bryan C. Hendrix, Thomas H. Baum, Debra A. Desrochers
  • Patent number: 6133051
    Abstract: A metal oxide ceramic layer is formed from an amorphous film. The metal oxide ceramic layer comprises, for example, a Bi-based oxide ceramic, The amorphous Bi-based metal oxide layer is annealed to transformed it into a ferroelectric layer. A lower thermal budget is needed to transform the amorphous Bi-based metal oxide ceramic into the ferroelectric phase.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: October 17, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank S. Hintermaier, Bryan C. Hendrix, Jeffrey F. Roeder, Debra A. Desrochers, Thomas H. Baum