Patents by Inventor Frank Seliger

Frank Seliger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8987103
    Abstract: In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: March 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Markus Lenski, Kerstin Ruttloff, Volker Jaschke, Frank Seliger, Ralf Otterbach
  • Patent number: 8932930
    Abstract: Sophisticated gate stacks including a high-k dielectric material and a metal-containing electrode material may be covered by a protection liner, such as a silicon nitride liner, which may be maintained throughout the entire manufacturing sequence at the bottom of the gate stacks. For this purpose, a mask material may be applied prior to removing cap materials and spacer layers that may be used for encapsulating the gate stacks during the selective epitaxial growth of a strain-inducing semiconductor alloy. Consequently, enhanced integrity may be maintained throughout the entire manufacturing sequence, while at the same time one or more lithography processes may be avoided.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 13, 2015
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sven Beyer, Frank Seliger, Gunter Grasshoff
  • Patent number: 8765559
    Abstract: When forming sophisticated gate electrode structures, such as high-k metal gate electrode structures, an appropriate encapsulation may be achieved, while also undue material loss of a strain-inducing semiconductor material that is provided in one type of transistor may be avoided. To this end, the patterning of the protective spacer structure prior to depositing the strain-inducing semiconductor material may be achieved for each type of transistor on the basis of the same process flow, while, after the deposition of the strain-inducing semiconductor material, an etch stop layer may be provided so as to preserve integrity of the active regions.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski, Frank Seliger, Frank Richter
  • Patent number: 8765542
    Abstract: One method disclosed includes forming a gate structure of a transistor above a surface of a semiconducting substrate, forming a sidewall spacer proximate the gate structure, forming a sacrificial layer of material above the protective cap layer, sidewall spacer and substrate, forming an OPL layer above the sacrificial layer, reducing a thickness of the OPL layer such that, after the reduction, an upper surface of the OPL layer is positioned at a level that is below a level of an upper surface of the protective cap layer, performing a first etching process to remove the sacrificial layer from above the protective cap layer to expose the protective cap layer for further processing, performing a second etching process to remove the protective cap layer and performing at least one process operation to remove at least one of the OPL layer or the sacrificial layer from above the surface of the substrate.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: July 1, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Joachim Patzer, Frank Seliger, Markus Lenski, Stephan Kronholz
  • Patent number: 8561446
    Abstract: Bonding wires for sophisticated bonding applications may be efficiently formed on the basis of a corresponding template device that may be formed on the basis of semiconductor material, such as silicon, in combination with associated fabrication techniques, such as lithography and etch techniques. Hence, any appropriate diameter and cross-sectional shape may be obtained with a high degree of accuracy and reliability.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: October 22, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Matthias Lehr, Frank Kuechenmeister, Frank Seliger
  • Patent number: 8560857
    Abstract: To provide an information processing apparatus, a server apparatus, a method of an information processing apparatus, a method of a server apparatus, and an apparatus executable program. An information processing apparatus uses signed integrity values unique to software configuration and asserting integrity of initial codes of a networked server. The server apparatus generates keys used for certifying the server apparatus (S810, S820, S830). One of the keys are certified by a third party to generate a digital signature (S840). The digital signature is attached to the integrity values and the signed integrity values are transmitted to the information processing apparatus for allowing the information processing apparatus to have secure services through the network (S850, S860).
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Seiji Munetoh, Hiroshi Maruyama, Frank Seliger, Nataraj Nagaratnam
  • Patent number: 8338306
    Abstract: In a replacement gate approach, the polysilicon material may be efficiently removed during a wet chemical etch process, while the semiconductor material in the resistive structures may be substantially preserved. For this purpose, a species such as xenon may be incorporated into the semiconductor material of the resistive structure, thereby imparting a significantly increased etch resistivity to the semiconductor material. The xenon may be incorporated at any appropriate manufacturing stage.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 25, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Ralf Richter, Katja Steffen, Johannes Groschopf, Frank Seliger, Andreas Ott, Manfred Heinz, Andy Wei
  • Patent number: 8338284
    Abstract: In sophisticated semiconductor devices, strain-inducing materials having a reduced dielectric strength or having certain conductivity, such as metal nitride and the like, may be used in the contact level in order to enhance performance of circuit elements, such as field effect transistors. For this purpose, a strain-inducing material may be efficiently encapsulated on the basis of a dielectric layer stack that may be patterned prior to forming the actual interlayer dielectric material in order to mask sidewall surface areas on the basis of spacer elements.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 25, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kai Frohberg, Hartmut Ruelke, Volker Jaschke, Joerg Hohage, Frank Seliger
  • Patent number: 8329526
    Abstract: Dielectric cap layers of sophisticated high-k metal gate electrode structures may be efficiently removed on the basis of a sacrificial fill material, thereby reliably preserving integrity of a protective sidewall spacer structure, which in turn may result in superior uniformity of the threshold voltage of the transistors. The sacrificial fill material may be provided in the form of an organic material that may be reduced in thickness on the basis of a wet developing process, thereby enabling a high degree of process controllability.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 11, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Frank Seliger, Ralf Richter, Markus Lenski
  • Patent number: 8329549
    Abstract: Sophisticated gate stacks including a high-k dielectric material and a metal-containing electrode material may be covered by a protection liner, such as a silicon nitride liner, which may be maintained throughout the entire manufacturing sequence at the bottom of the gate stacks. For this purpose, a mask material may be applied prior to removing cap materials and spacer layers that may be used for encapsulating the gate stacks during the selective epitaxial growth of a strain-inducing semiconductor alloy. Consequently, enhanced integrity may be maintained throughout the entire manufacturing sequence, while at the same time one or more lithography processes may be avoided.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: December 11, 2012
    Assignee: Advanced Micro Devices Inc.
    Inventors: Sven Beyer, Frank Seliger, Gunter Grasshoff
  • Patent number: 8258062
    Abstract: In a replacement gate approach, the dielectric cap layers of the gate electrode structures are removed in a separate removal process, such as a plasma assisted etch process, in order to provide superior process conditions during the subsequent planarization of the interlayer dielectric material for exposing the sacrificial gate material. Due to the superior process conditions, the selective removal of the sacrificial gate material may be accomplished with enhanced uniformity, thereby also contributing to superior stability of transistor characteristics.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 4, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Ralf Richter, Frank Seliger, Martin Mazur
  • Publication number: 20120196417
    Abstract: When forming sophisticated gate electrode structures, such as high-k metal gate electrode structures, an appropriate encapsulation may be achieved, while also undue material loss of a strain-inducing semiconductor material that is provided in one type of transistor may be avoided. To this end, the patterning of the protective spacer structure prior to depositing the strain-inducing semiconductor material may be achieved for each type of transistor on the basis of the same process flow, while, after the deposition of the strain-inducing semiconductor material, an etch stop layer may be provided so as to preserve integrity of the active regions.
    Type: Application
    Filed: January 25, 2012
    Publication date: August 2, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski, Frank Seliger, Frank Richter
  • Publication number: 20120185694
    Abstract: To provide an information processing apparatus, a server apparatus, a method of an information processing apparatus, a method of a server apparatus, and an apparatus executable program. An information processing apparatus uses signed integrity values unique to software configuration and asserting integrity of initial codes of a networked server. The server apparatus generates keys used for certifying the server apparatus (S810, S820, S830). One of the keys are certified by a third party to generate a digital signature (S840). The digital signature is attached to the integrity values and the signed integrity values are transmitted to the information processing apparatus for allowing the information processing apparatus to have secure services through the network (S850, S860).
    Type: Application
    Filed: March 28, 2012
    Publication date: July 19, 2012
    Applicant: International Business Machines Corporation
    Inventors: SEIJI MUNETOH, HIROSHI MARUYAMA, FRANK SELIGER, NATARAJ NAGARATNAM
  • Patent number: 8171295
    Abstract: To provide an information processing apparatus, a server apparatus, a method of an information processing apparatus, a method of a server apparatus, and an apparatus executable program. An information processing apparatus uses signed integrity values unique to software configuration and asserting integrity of initial codes of a networked server. The server apparatus generates keys used for certifying the server apparatus (S810, S820, S830). One of the keys are certified by a third party to generate a digital signature (S840). The digital signature is attached to the integrity values and the signed integrity values are transmitted to the information processing apparatus for allowing the information processing apparatus to have secure services through the network (S850, S860).
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Seiji Munetoh, Hiroshi Maruyama, Frank Seliger, Nataraj Nagaratnam
  • Patent number: 7981740
    Abstract: When forming transistor elements on the basis of sophisticated high-k metal gate structures, the efficiency of a replacement gate approach may be enhanced by more efficiently adjusting the gate height of transistors of different conductivity type when the dielectric cap layers of transistors may have experienced a different process history and may thus require a subsequent adaptation of the final cap layer thickness in one type of the transistors. For this purpose, a hard mask material may be used during a process sequence for forming offset spacer elements in one gate electrode structure while covering another gate electrode structure.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 19, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Markus Lenski, Kerstin Ruttloff, Martin Mazur, Frank Seliger, Ralf Otterbach
  • Publication number: 20110129980
    Abstract: Dielectric cap layers of sophisticated high-k metal gate electrode structures may be efficiently removed on the basis of a sacrificial fill material, thereby reliably preserving integrity of a protective sidewall spacer structure, which in turn may result in superior uniformity of the threshold voltage of the transistors. The sacrificial fill material may be provided in the form of an organic material that may be reduced in thickness on the basis of a wet developing process, thereby enabling a high degree of process controllability.
    Type: Application
    Filed: October 15, 2010
    Publication date: June 2, 2011
    Inventors: Jens Heinrich, Frank Seliger, Ralf Richter, Markus Lenski
  • Patent number: 7951677
    Abstract: In a replacement gate approach, a top area of a gate opening has a superior cross-sectional shape which is accomplished on the basis of a plasma assisted etch process or an ion sputter process. During the process, a sacrificial fill material protects sensitive materials, such as a high-k dielectric material and a corresponding cap material. Consequently, the subsequent deposition of a work function adjusting material layer may not result in a surface topography which may result in a non-reliable filling-in of the electrode metal. In some illustrative embodiments, the sacrificial fill material may also be used as a deposition mask for avoiding the deposition of the work function adjusting metal in certain gate openings in which a different type of work function adjusting species is required.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 31, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Jens Heinrich, Thomas Werner, Frank Seliger, Frank Richter
  • Publication number: 20110104880
    Abstract: In a replacement gate approach, a top area of a gate opening has a superior cross-sectional shape which is accomplished on the basis of a plasma assisted etch process or an ion sputter process. During the process, a sacrificial fill material protects sensitive materials, such as a high-k dielectric material and a corresponding cap material. Consequently, the subsequent deposition of a work function adjusting material layer may not result in a surface topography which may result in a non-reliable filling-in of the electrode metal. In some illustrative embodiments, the sacrificial fill material may also be used as a deposition mask for avoiding the deposition of the work function adjusting metal in certain gate openings in which a different type of work function adjusting species is required.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 5, 2011
    Inventors: Jens Heinrich, Thomas Werner, Frank Seliger, Frank Richter
  • Publication number: 20110073956
    Abstract: In a replacement gate approach, the polysilicon material may be efficiently removed during a wet chemical etch process, while the semiconductor material in the resistive structures may be substantially preserved. For this purpose, a species such as xenon may be incorporated into the semiconductor material of the resistive structure, thereby imparting a significantly increased etch resistivity to the semiconductor material. The xenon may be incorporated at any appropriate manufacturing stage.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 31, 2011
    Inventors: Jens Heinrich, Ralf Richter, Katja Steffen, Johannes Groschopf, Frank Seliger, Andreas Ott, Manfred Heinz, Andy Wei
  • Publication number: 20110073959
    Abstract: In sophisticated semiconductor devices, strain-inducing materials having a reduced dielectric strength or having certain conductivity, such as metal nitride and the like, may be used in the contact level in order to enhance performance of circuit elements, such as field effect transistors. For this purpose, a strain-inducing material may be efficiently encapsulated on the basis of a dielectric layer stack that may be patterned prior to forming the actual interlayer dielectric material in order to mask sidewall surface areas on the basis of spacer elements.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 31, 2011
    Inventors: Kai Frohberg, Hartmut Ruelke, Volker Jaschke, Joerg Hohage, Frank Seliger