Patents by Inventor Frank Wippermann

Frank Wippermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11014269
    Abstract: A device for varyingly irradiating by means of ray shaping is described. Furthermore, a method of manufacturing a structure made of a curable material by means of molding is described. In a first step of the method, a molding tool is arranged above a surface such that the curable material abuts on the surface and a molding surface, facing the surface, of the molding tool in a region between the molding tool and the surface and such that further curable material may continue to flow to the region. In a second step, the curable material is irradiated in the region in a locally varying manner such that the ray experiences ray shaping in an optical channel and such that the curable material cures at different speeds in a laterally varying manner.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: May 25, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Reimann, Jens Dunkel, Andreas Braeuer
  • Patent number: 11016273
    Abstract: A device includes a housing and a multi-aperture imaging device. The multi-aperture imaging device includes an array of optical channels arranged next to one another and a beam-deflector for deflecting an optical path of the optical channels. In a first operating state of the device, the housing encloses a housing volume. In the first operating state of the device, the beam-deflector includes a first position within the housing volume. In a second operating state of the device, the beam-deflector includes a second position where the beam-deflector is arranged at least partly outside the housing volume.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 25, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Nicolas Lange, Oliver Pabst
  • Patent number: 11009673
    Abstract: An apparatus having an optical structure, ridges and an electrostatic actuator with a cantilever electrode is described, wherein the ridges connect the optical structure to a supporting structure and the electrostatic drive is implemented to deflect the optical structure.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: May 18, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Reimann, Nicolas Lange, Andreas Braeuer
  • Patent number: 10996460
    Abstract: A multi-aperture imaging device includes an image sensor and array of optical channels, wherein each optical channel includes optics for projecting at least one partial field of view of a total field of view on an image sensor area of the image sensor. The multi-aperture imaging device includes a beam deflector for deflecting an optical path of the optical channels. A first optical channel of the array is configured to image a first partial field of view of a first total field of view, wherein a second optical channel of the array is configured to image a second partial field of view of the first total field of view. A third optical channel is configured to completely image a second total field of view. The second total field of view is an incomplete section of the first total field of view.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: May 4, 2021
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Frank Wippermann, Jacques Duparré
  • Patent number: 10873688
    Abstract: The fact that a beam-deflecting device can be produced cost-effectively and without any losses of optical quality of the multi-aperture imaging device is used when a carrier substrate is provided for the same, wherein the carrier substrate is common to the plurality of optical channels and is installed with a setting angle, i.e. oblique with respect to the image sensor in the multi-aperture imaging device such that a deflection angle of deflecting the optical path of each optical channel is based, on the one hand, on the setting angle and, on the other hand, on an individual inclination angle with respect to the carrier substrate of a reflecting facet of a surface of the beam-deflecting device facing the image sensor, the reflecting facet being allocated to the optical channel.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: December 22, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster
  • Publication number: 20200382702
    Abstract: What is described are a method and a device, wherein two types of individual images are captured, namely a set of individual images captured simultaneously, and a further set of individual images captured in temporal succession. Among said two sets of individual images, individual images are selected which in combination result in a panoramic image.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Inventors: Alexander OBERDOERSTER, Andreas BRUECKNER, Jacques DUPARRÉ, Frank WIPPERMANN
  • Publication number: 20200357103
    Abstract: A multi-aperture imaging device that is, on the one hand, able to provide image information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the multi-aperture imaging device, as well as with a second arrangement of optical channels for projecting at least a part of of the total field of view on a second image sensor area of the image sensor.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 12, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Andreas BRÄUER, Alexander OBERDÖRSTER
  • Patent number: 10771668
    Abstract: A multi-aperture imaging device includes at least one image sensor and an array of juxtaposed optical channels. Each optical channel includes optics for imaging of projecting at least one partial area of an object area on an image sensor area of the image sensor. A first optics of a first optical channel is configured to project a first partial area of the object area on a first image sensor area and to project a second partial area of the object area on a second image sensor area. A second optics of a second optical channel is configured to project at least a third partial area of the object area on a third image sensor area. The first partial area and the second partial area are disjoint in the object area. The third partial area overlaps incompletely with the first partial area.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 8, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Reimann
  • Patent number: 10732377
    Abstract: Providing a multi-aperture imaging device having a single-line array of optical channels arranged next to one another with and adjuster for channel-specifically changing a relative position between an image sensor region of a respective optical channel, the optics of the respective optical channel and a beam-deflecting device of the respective channel or for channel-specifically changing an optical characteristic of the optics of the respective optical channel or an optical characteristic of the beam-deflecting device relating to deflecting the optical path of the respective optical channel, and a storage having default values stored therein and/or a controller for converting sensor data to default values for channel-specifically controlling the adjusting device is used to reduce requirements to, for example, manufacturing tolerances of the multi-aperture imaging device and/or requirements to the multi-aperture imaging device as regards position and shape invariance relative to temperature variations such tha
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: August 4, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster
  • Publication number: 20200221032
    Abstract: In order to achieve a relatively small installation height of a multi-aperture imaging device having a one-line array of adjacently arranged optical channels, lenses of the optics of the optical channels are attached to a main side of a substrate by one or more lens holders and are mechanically connected via the substrate, the substrate being positioned such that the optical paths of the plurality of optical channels pass therethrough.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Andreas BRÄUER, Alexander OBERDÖRSTER
  • Publication number: 20200221003
    Abstract: A multi-aperture imaging device includes an image sensor, an array of optical channels, each optical channel including an optic for imaging a partial field of view of a total field of view onto an image sensor region of the image sensor, and a beam-deflector switchable between a first rotational position and a second rotational position by executing a switching movement, and configured to deflect, in a first rotational position, optical paths of the optical channels into a first viewing direction, and to deflect, in a second rotational position, the optical paths of the optical channels into a second viewing direction. The array is configured to execute, based on the switching movement, an adjustment movement for adjusting an orientation of the array with respect to the beam-deflector.
    Type: Application
    Filed: March 10, 2020
    Publication date: July 9, 2020
    Inventors: Frank Wippermann, Nico Hagen, Andreas Reimann
  • Patent number: 10708570
    Abstract: A 3D multi-aperture imaging device includes a plurality of image sensor areas. The 3D multi-aperture imaging device includes a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of the image sensor and includes a second plurality of optical channels for projecting second partial fields of view of the total field of view overlapping each other and the first partial fields of view on second image sensor areas. The first and second pluralities of optical channels are arranged laterally offset from one another. The 3D multi-aperture imaging device includes a processor that is configured to receive image sensor data from the image sensor that is configured to provide an output signal including a data header, wherein the data header includes information regarding the structure of the 3D multi-aperture imaging device.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 7, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer
  • Patent number: 10701340
    Abstract: A 3D multi-aperture imaging device that is, on the one hand, able to provide 3D information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The 3 D multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the 3D multi-aperture imaging device, as well as with a second plurality of optical channels for projecting overlapping second partial fields of view of the total field of view on second image sensor areas of the image sensor.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 30, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 10652438
    Abstract: A multi-aperture imaging device described herein includes at least one image sensor and an array of juxtaposed optical channels. Each optical channel includes optics for projecting at least one partial area of an object area on an image sensor area of the image sensor. The array includes: a housing including a wall structure facing or facing away from the image sensor, through which the optical channels pass, and a sidewall structure arranged on the wall structure, wherein the wall structure or the sidewall structure is formed including glass, ceramic, glass ceramic or a crystalline material, wherein the optics of the optical channels are arranged in the housing, and wherein the wall structure is connected to optics of the optical channels and fixes the optics with respect to one another.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: May 12, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Reimann, Andreas Braeuer
  • Publication number: 20200132889
    Abstract: A multi-aperture imaging device includes an array of optical channels, wherein each optical channel includes optics for imaging a partial field of view of a total field of view onto an image sensor region of an image sensor. The multi-aperture imaging device includes a beam-deflecting unit for deflecting an optical path of the optical channels to a viewing direction of the multi-aperture imaging device. The multi-aperture imaging device includes a diaphragm structure arranged to at least partly close a gap between the array and the beam-deflecting unit.
    Type: Application
    Filed: December 30, 2019
    Publication date: April 30, 2020
    Inventors: Frank WIPPERMANN, Jacques DUPARRÉ
  • Patent number: 10630902
    Abstract: In order to achieve a relatively small installation height of a multi-aperture imaging device having a one-line array of adjacently arranged optical channels, lenses of the optics of the optical channels are attached to a main side of a substrate by one or more lens holders and are mechanically connected via the substrate, the substrate being positioned such that the optical paths of the plurality of optical channels pass therethrough.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: April 21, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 10606152
    Abstract: Multi-aperture imaging device includes at least one image sensor, an array of juxtaposed optical channels, wherein each optical channel has optics for projecting at least one partial area of an object area on an image sensor area of the image sensor, and a beam deflector for deflecting an optical path of the optical channels in beam-deflecting areas of the beam deflector. The beam deflector is formed as an array of facets arranged along a line-extension direction of the array of optical channels. One facet is allocated to each optical channel. Each facet has a beam-deflecting area. A stray light suppressing structure is arranged between a first beam-deflecting area of a first facet and a second beam-deflecting area of a juxtaposed second facet, which is configured to reduce transition of stray light between the first beam-deflecting area and the second beam-deflecting area.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 31, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer
  • Patent number: 10571646
    Abstract: An apparatus having an optical structure and ridges is described, wherein the ridges connect the optical structure to a supporting structure and wherein the optical structure is able to perform a movement in relation to a reference plane.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: February 25, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Reimann, Nicolas Lange, Andreas Braeuer
  • Publication number: 20200057310
    Abstract: A multi-aperture imaging device includes an image sensor and an array of optical channels, wherein each optical channel includes an optic for imaging at least a part of a total field of view onto an image sensor region of the image sensor. The multi-aperture imaging device includes a beam-deflector including at least one beam-deflecting element for deflecting an optical path of an optical channel, wherein each optical channel is assigned a beam-deflecting element. The beam-deflecting element is configured to have a transparent state of a controllable surface based on first electric control and to have a reflecting state of the controllable surface based on a second electric control in order to deflect the optical path.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Jacques DUPARRÉ, Alexander OBERDÖRSTER
  • Patent number: 10567629
    Abstract: The fact that a beam-deflecting device can be produced cost-effectively and without any losses of optical quality of the multi-aperture imaging device is used when a carrier substrate is provided for the same, wherein the carrier substrate is common to the plurality of optical channels and is installed with a setting angle, i.e. oblique with respect to the image sensor in the multi-aperture imaging device such that a deflection angle of deflecting the optical path of each optical channel is based, on the one hand, on the setting angle and, on the other hand, on an individual inclination angle with respect to the carrier substrate of a reflecting facet of a surface of the beam-deflecting device facing the image sensor, the reflecting facet being allocated to the optical channel.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: February 18, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster