Patents by Inventor Frank Y. Xu

Frank Y. Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8637587
    Abstract: Release agents with increased affinity toward nano-imprint lithography template surfaces interact strongly with the template during separation of the template from the solidified resist in a nano-imprint lithography process. The strong interaction between the surfactant and the template surface reduces the amount of surfactant pulled off the template surface during separation of a patterned layer from the template in an imprint lithography cycle. Maintaining more surfactant associated with the surface of the template after the separation of the patterned layer from the template may reduce the amount of surfactant needed in a liquid resist to achieve suitable release of the solidified resist from the template during an imprint lithography process. Strong association of the release agent with the surface of the template facilitates the formation of ultra-thin residual layers and dense fine features in nano-imprint lithography.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 28, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Weijun Liu
  • Publication number: 20140021167
    Abstract: Methods for creating nano-shaped patterns are described. This approach may be used to directly pattern substrates and/or create imprint lithography molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates in a high throughput process.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 23, 2014
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Dwayne L. LaBrake
  • Patent number: 8616873
    Abstract: A micro-conformal nanoimprint lithography template includes a backing layer and a nanopatterned layer adhered to the backing layer. The elastic modulus of the backing layer exceeds the elastic modulus of the nanopatterned layer. The micro-conformal nanoimprint lithography template can be used to form a patterned layer from an imprint resist on a substrate, the substrate having a micron-scale defect, such that an excluded distance from an exterior surface of the micron-scale defect to the patterned layer formed by the nanoimprint lithography template is less than a height of the defect. The nanoimprint lithography template can be used to form multiple imprints with no reduction in feature fidelity.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: December 31, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Michael N. Miller, Frank Y. Xu, Nicholas A. Stacey
  • Patent number: 8557351
    Abstract: The present invention provides a method adhering a layer to a substrate that features defining first and second interfaces by having a composition present between the layer and the substrate that forms covalent bonds to the layer and adheres to the substrate employing one or more of covalent bonds, ionic bonds and Van der Waals forces. In this manner, the strength of the adhering force of the layer to the composition is assured to be stronger than the adhering force of the layer to the composition formed from a predetermined adhering mechanism, i.e., an adhering mechanism that does not include covalent bonding.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 15, 2013
    Assignee: Molecular Imprints, Inc.
    Inventor: Frank Y. Xu
  • Publication number: 20130266682
    Abstract: Porous nano-imprint lithography templates may include pores, channels, or porous layers arranged to allow evacuation of gas trapped between a nano-imprint lithography template and substrate. The pores or channels may be formed by etch or other processes. Gaskets may be formed on an nano-imprint lithography template to restrict flow of polymerizable material during nano-imprint lithography processes.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Niyaz Khusnatdinov, Weijun Liu, Frank Y. Xu, Edward Brian Fletcher, Fen Wan
  • Patent number: 8545709
    Abstract: Thickness of a residual layer may be altered to control critical dimension of features in a patterned layer provided by an imprint lithography process. The thickness of the residual layer may be directly proportional or inversely proportional to the critical dimension of features. Dispensing techniques and material selection may also provide control of the critical dimension of features in the patterned layer.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 1, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Cynthia B. Brooks, Dwayne L. LaBrake, Niyaz Khusnatdinov, Michael N. Miller, Sidlgata V. Sreenivasan, David James Lentz, Frank Y. Xu
  • Patent number: 8541053
    Abstract: Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Marlon Menezes, Frank Y. Xu, Fen Wan
  • Patent number: 8529778
    Abstract: Methods for creating nano-shaped patterns are described. This approach may be used to directly pattern substrates and/or create imprint lithography molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates in a high throughput process.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 10, 2013
    Assignees: Molecular Imprints, Inc., Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Dwayne L. LaBrake
  • Patent number: 8415010
    Abstract: A nano-imprint lithography stack includes a nano-imprint lithography substrate, a non-silicon-containing layer solidified from a first polymerizable, non-silicon-containing composition, and a silicon-containing layer solidified from a polymerizable silicon-containing composition adhered to a surface of the non-silicon-containing layer. The non-silicon-containing layer is adhered directly or through one or more intervening layers to the nano-imprint lithography substrate. The silicon-containing layer includes a silsesquioxane with a general formula (R?(4-2z)SiOz)x(HOSiO1.5)y, wherein R? is a hydrocarbon group or two or more different hydrocarbon groups other than methyl, 1<z<2, and x and y are integers.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 9, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Weijun Liu, Frank Y. Xu
  • Patent number: 8361546
    Abstract: Systems and methods for adhering a substrate to a patterned layer are described. Included are in situ cleaning and conditioning of the substrate, and the application of an adhesion layer between the substrate and the patterned layer, as well as forming an intermediate layer between adhesion materials and the substrate.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: January 29, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Edward B. Fletcher, Zhengmao Ye, Dwayne L. LaBrake, Frank Y. Xu
  • Publication number: 20120288686
    Abstract: A multi-layer stack for imprint lithography is formed by applying a first polymerizable composition to a substrate, polymerizing the first polymerizable composition to form a first polymerized layer, applying a second polymerizable composition to the first polymerized layer, and polymerizing the second polymerizable composition to form a second polymerized layer on the first polymerized layer. The first polymerizable composition includes a polymerizable component with a glass transition temperature less than about 25° C., and the first polymerized layer is substantially impermeable to the second polymerizable composition.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 15, 2012
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Frank Y. Xu, Weijun Liu, Cynthia B. Brooks, Dwayne L. LaBrake, David J. Lentz
  • Patent number: 8268220
    Abstract: Improved wetting characteristics together with improved release characteristics with respect to a substrate and an imprint lithography mold having imprinting material disposed therebetween.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 18, 2012
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Pankaj B. Lad, Ian Matthew McMackin, Van Nguyen Truskett, Edward Brian Fletcher
  • Publication number: 20120214066
    Abstract: A silicon nanowire array including a multiplicity of silicon nanowires extending from a silicon substrate. Cross-sectional shape of the silicon nanowires and spacing between the silicon nanowires can be selected to maximize the ratio of the surface area of the silicon nanowires to the volume of the nanowire array. Methods of forming the silicon nanowire array include a nanoimprint lithography process to form a template for the silicon nanowire array and an electroless etching process to etch the template formed by the nanoimprint lithography process.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 23, 2012
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Michael N. Miller, Fen Wan, Vikramjit Singh, Darren D. Donaldson, Gerard M. Schmid, Sidlgata V. Sreenivasan, Frank Y. Xu
  • Publication number: 20120201969
    Abstract: An imprint lithography template having a photoactive coating adhered to a surface of the template. Irradiation of the photoactive coating promotes cleaning of the template by decomposition of organic material proximate the template (e.g., organic material adsorbed on the template). An imprint lithography system may be configured such that template cleaning is achieved during formation of a patterned layer on an imprint lithography substrate. Cleaning of the template during an imprint lithography process reduces down-time that may be associated with template maintenance.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 9, 2012
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Edward B. Fletcher, Frank Y. Xu
  • Publication number: 20120189780
    Abstract: Methods for manufacturing a patterned surface on a substrate are described. Generally, the patterned surface is defined by a residual layer having a thickness of less than approximately 5 nm.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 26, 2012
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Dwayne L. LaBrake, Niyaz Khusnatdinov, Christopher Ellis Jones, Frank Y. Xu
  • Publication number: 20120187085
    Abstract: Thickness of a residual layer may be altered to control critical dimension of features in a patterned layer provided by an imprint lithography process. The thickness of the residual layer may be directly proportional or inversely proportional to the critical dimension of features. Dispensing techniques and material selection may also provide control of the critical dimension of features in the patterned layer.
    Type: Application
    Filed: April 6, 2012
    Publication date: July 26, 2012
    Applicant: Molecular Imprints, Inc.
    Inventors: Cynthia B. Brooks, Dwayne L. LaBrake, Niyaz Khusnatdinov, Michael N. Miller, Sidlgata V. Sreenivasan, David James Lentz, Frank Y. Xu
  • Patent number: 8211214
    Abstract: The present invention is directed toward a method for reducing pattern distortions in imprinting layers by reducing gas pockets present in a layer of viscous liquid deposited on a substrate. To that end, the method includes varying a transport of the gases disposed proximate to the viscous liquid. Specifically, the atmosphere proximate to the substrate wherein a pattern is to be recorded is saturated with gases that are either highly soluble, highly diffusive, or both with respect to either the viscous liquid, the substrate, the template, or a combination thereof. Additionally, or in lieu of saturating the atmosphere, the pressure of the atmosphere may be reduced.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 3, 2012
    Assignees: Molecular Imprints, Inc., Board of Regents, The University of Texas
    Inventors: Frank Y. Xu, Niyaz Khusnatdinov
  • Publication number: 20120114559
    Abstract: Functional nanoparticles may be formed using at least one nanoimprint lithography step. In one embodiment, sacrificial material may be patterned on a multilayer substrate including one or more functional layers between removable layers using an imprint lithography process. At least one of the functional layers includes a functional material such as a pharmaceutical composition or imaging agent. The pattern may be further etched into the multilayer substrate. At least a portion of the functional material may then be removed to provide a crown surface exposing pillars. Removing the removable layers releases the pillars from the patterned structure to form functional nanoparticles such as drug or imaging agent carriers.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Vikramjit Singh, Frank Y. Xu, Sidlgata V. Sreenivasan
  • Publication number: 20120112385
    Abstract: Methods of making nano-scale structures with geometric cross-sections, including convex or non-convex cross-sections, are described. The approach may be used to directly pattern substrates and/or create imprint lithography templates or molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates, such as into a functional or sacrificial resist to form functional nanoparticles.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 10, 2012
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Sidlgata V. Sreenivasan, Vikramjit Singh, Frank Y. Xu, Byung-Jin Choi
  • Patent number: 8152511
    Abstract: An imprint lithography mold assembly includes a mold having a surface, a substrate having a surface, and a polymerizable composition disposed between the surface of the mold and the surface of the substrate. The polymerizable composition includes a bulk material and a non-ionic surfactant having a first end and a second end. The first end of the non-ionic surfactant has an affinity for the bulk material, and the second end of the non-ionic surfactant is fluorinated.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 10, 2012
    Assignee: Molecular Imprints, Inc.
    Inventors: Frank Y. Xu, Michael N. Miller