Patents by Inventor Fred Osorio

Fred Osorio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10448967
    Abstract: Discectomy kits with obturator, guard cannulas are provided. The kits have a safe and efficient cutting heads for removing a target tissue from a subject during a surgical procedure are provided, the cutting heads composing a part of systems that address several problems, including clogging of state-of-the-art systems during removal of such tissue, for example. The target tissue can include any tissue that is accessible through a small surgical opening, for example, a joint tissue such as a meniscus or an intervertebral tissue, such as a nucleus pulposus. The devices can be referred to as orthopedic tissue removal devices having cutting heads associated with vacuum systems, making the systems useful in several procedures, including X-LIF (lateral approach to an intervertebral fusions) procedures, T-LIF (transforaminal approach to intervertebral fusions) procedures, P-LIF (posterior approach to intervertebral fusions), and a percutaneous, transforaminal approach (Kambin triangle access).
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: October 22, 2019
    Assignee: DePuy Synthes Products, Inc.
    Inventors: John To, Fred Osorio
  • Patent number: 10342563
    Abstract: An anti-clogging device for a vacuum-assisted tissue removal system is provided. The device includes a tissue-separation chamber in a close proximity to (i) a cutting head operated by a physician and (ii) the physician for a filling and emptying by the physician during a tissue removal procedure, the cutting head and the tissue separation chamber in an operable communications with the suction assembly. The tissue separation chamber has an entry port in an operable communication with the cutting head for the entry of an excised tissue into the chamber, the excised tissue having a solid component and a liquid component; a baffle to separate the liquid component from the solid component; and, an exit port for the exit of liquid component out of the chamber. The tissue can include any tissue accessible through a small surgical opening, such as a nucleus pulposus tissue removed during a discectomy procedure.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: July 9, 2019
    Assignee: DePuy Synthes Products, Inc.
    Inventors: John To, Fred Osorio, Gary Daniel Zaretzka
  • Patent number: 10136911
    Abstract: An anti-clogging device for a vacuum-assisted tissue removal system is provided. The device includes a tissue-separation chamber in a close proximity to (i) a cutting head operated by a physician and (ii) the physician for a filling and emptying by the physician during a tissue removal procedure, the cutting head and the tissue separation chamber in an operable communications with the suction assembly. The tissue separation chamber has an entry port in an operable communication with the cutting head for the entry of an excised tissue into the chamber, the excised tissue having a solid component and a liquid component; a baffle to separate the liquid component from the solid component; and, an exit port for the exit of liquid component out of the chamber. The tissue can include any tissue accessible through a small surgical opening, such as a nucleus pulposus tissue removed during a discectomy procedure.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: November 27, 2018
    Assignee: DePuy Synthes Products, Inc.
    Inventors: John To, Fred Osorio, Gary Daniel Zaretzka
  • Publication number: 20160066946
    Abstract: Discectomy kits with obturator, guard cannulas are provided. The kits have a safe and efficient cutting heads for removing a target tissue from a subject during a surgical procedure are provided, the cutting heads composing a part of systems that address several problems, including clogging of state-of-the-art systems during removal of such tissue, for example. The target tissue can include any tissue that is accessible through a small surgical opening, for example, a joint tissue such as a meniscus or an intervertebral tissue, such as a nucleus pulposus. The devices can be referred to as orthopedic tissue removal devices having cutting heads associated with vacuum systems, making the systems useful in several procedures, including X-LIF (lateral approach to an intervertebral fusions) procedures, T-LIF (transforaminal approach to intervertebral fusions) procedures, P-LIF (posterior approach to intervertebral fusions), and a percutaneous, transforaminal approach (Kambin triangle access).
    Type: Application
    Filed: November 6, 2015
    Publication date: March 10, 2016
    Inventors: John TO, Fred OSORIO
  • Patent number: 9265521
    Abstract: Articulating, safe and efficient cutting heads for removing a target tissue from a subject during a surgical procedure are provided, the cutting heads composing a part of systems that address several problems, including clogging of state-of-the-art systems during removal of such tissue, for example. The target tissue can include any tissue that is accessible through a small surgical opening, for example, a joint tissue such as a meniscus or an intervertebral tissue, such as a nucleus pulposus. The devices can be referred to as orthopedic tissue removal devices having cutting heads associated with vacuum systems, making the systems useful in several procedures, including X-LIF (lateral approach to an intervertebral fusions) procedures, T-LIF (transforaminal approach to intervertebral fusions) procedures, P-LIF (posterior approach to intervertebral fusions), and a percutaneous, transforaminal approach (Kambin triangle access).
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 23, 2016
    Assignee: OUROBOROS MEDICAL, INC.
    Inventors: John To, Fred Osorio
  • Publication number: 20150080896
    Abstract: An anti-clogging device for a vacuum-assisted tissue removal system is provided. The device includes a tissue-separation chamber in a close proximity to (i) a cutting head operated by a physician and (ii) the physician for a filling and emptying by the physician during a tissue removal procedure, the cutting head and the tissue separation chamber in an operable communications with the suction assembly. The tissue separation chamber has an entry port in an operable communication with the cutting head for the entry of an excised tissue into the chamber, the excised tissue having a solid component and a liquid component; a baffle to separate the liquid component from the solid component; and, an exit port for the exit of liquid component out of the chamber. The tissue can include any tissue accessible through a small surgical opening, such as a nucleus pulposus tissue removed during a discectomy procedure.
    Type: Application
    Filed: July 15, 2014
    Publication date: March 19, 2015
    Inventors: John TO, FRED OSORIO, GARY DANIEL ZARETZKA
  • Publication number: 20140358170
    Abstract: Articulating, safe and efficient cutting heads for removing a target tissue from a subject during a surgical procedure are provided, the cutting heads composing a part of systems that address several problems, including clogging of state-of-the-art systems during removal of such tissue, for example. The target tissue can include any tissue that is accessible through a small surgical opening, for example, a joint tissue such as a meniscus or an intervertebral tissue, such as a nucleus pulposus. The devices can be referred to as orthopedic tissue removal devices having cutting heads associated with vacuum systems, making the systems useful in several procedures, including X-LIF (lateral approach to an intervertebral fusions) procedures, T-LIF (transforaminal approach to intervertebral fusions) procedures, P-LIF (posterior approach to intervertebral fusions), and a percutaneous, transforaminal approach (Kambin triangle access).
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: John To, Fred Osorio