Patents by Inventor Fred W. Chapman

Fred W. Chapman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140200464
    Abstract: A single system may provide to a patient: temperature change, remote ischemic conditioning, and sometimes both concurrently. The system may include a patient unit that includes an inflatable bladder, and a duct having a cavity. The patient unit is intended to be applied around a patient's limb. A temperature subsystem can force a flow of a first fluid through the cavity so that the first fluid can exchange heat with the patient's limb. The pressure subsystem may force a fluid into the bladder, to establish pressure against the limb. A controller may control both the temperature subsystem and the pressure subsystem, so as to control the treatment received by the patient.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 17, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Brian Daniel Webster, Daniel Ralph Piha, Fred W. Chapman
  • Publication number: 20140188500
    Abstract: Devices, systems, software and methods for CPR quality assessment. Patient data is received that may be derived from a session of administering sets of CPR chest compressions to a patient. The sets can be separated by pauses. Then a figure of merit (FOM) can be computed from the data in the computation, at least one pause can contribute a penalty to the FOM. The penalty has a value determined from at least one control factor, other than a constant linear dependence on the duration of the pause. This way, pauses can incur penalties to the FOM computation depending on their context, instead of merely their duration. For example, a penalty can escalate non-linearly if its pause becomes unduly long, or if it follows a set of chest compressions that was unduly short. As such, a better CPR quality assessment is achieved.
    Type: Application
    Filed: October 31, 2013
    Publication date: July 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Fred W. Chapman, Robert G. Walker
  • Publication number: 20140100496
    Abstract: In one embodiment, a manual CPR device, also known as a CPR derrick, includes a frame that is put close to a patient who is on the ground. The device also includes a piston that can be moved up and down, and is aligned to be over the patient's chest. The device also has an actuator that the rescuer can operate manually so as to move the piston up and down, which will deliver compressions to the patient's chest. A bottom stop prevents the compressions from being too deep. In some embodiments, proper dimensioning of the CPR derrick permits the rescuer to perform CPR chest compressions while standing up, i.e. without kneeling. The rescuer may be able to perform higher quality CPR, and for a longer time, giving more opportunity to a life-saving team to arrive in time.
    Type: Application
    Filed: August 19, 2013
    Publication date: April 10, 2014
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Bethany Joyce Johnson, John Carlton Daynes, Fred W. Chapman, Robert P. Marx, Jr., Gregory T. Kavounas, Erik Carl Bernhard von Schenck
  • Publication number: 20140094866
    Abstract: The defibrillator may include a heart rhythm detector to detect the heart rhythm of a patient, a manual mode controller structured to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode depending on an input from a human operator, a shock module to cause the defibrillator to deliver a shock to the patient according to the operating mode, and an automatic mode controller structured to, after the shock module has delivered the shock to the patient, set the external defibrillator to the synchronous shock operating mode or the asynchronous shock operating mode depending on the detected heart rhythm of the patient and without input from the human operator.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville, James W. Taylor
  • Publication number: 20140094865
    Abstract: An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20140094867
    Abstract: An external defibrillator, such as a wearable defibrillator can have a heart rhythm detector to detect the heart rhythm of a patient. The defibrillator can also have a synchronous shock operating mode and an asynchronous shock operating mode. A controller can set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator and a sync module configured to identify a first portion of the heart rhythm detected from a first ECG lead with which to time the delivery of the shock therapy to the patient when the operating mode of the defibrillator is in synchronous shock operating mode. A comparator module can compare timing of a QRS complex detected from the first ECG lead with the timing of the QRS complex detected by the second EGG lead.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20140094869
    Abstract: An external defibrillator may have a controller to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode, a shock module to cause the defibrillator to deliver shock therapy to a patient according to the present operating mode of the defibrillator, and a heart rhythm detector to detect a heart rhythm of the patient. The defibrillator may also have a mode assessment module to determine whether the present operating mode or selected defibrillation energy of the defibrillator is appropriate based on the detected heart rhythm of the patient.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20130172951
    Abstract: Embodiments of the present concept are directed to external defibrillators that include a utility light for use by one or more rescuers using the defibrillator. In one implementation, an external defibrillator has a housing, an energy storage module for storing an electrical charge, a defibrillation port for guiding the stored electrical charge to a person, and a processor for determining when to guide the electrical charge. The defibrillator also includes a user interface that includes a screen showing indications by light, and a separate utility light coupled to the housing via a light-coupling structure. The utility light is structured to generate and cast a beam of light with a beam divergence angle of no more than 160 degrees in order to illuminate a certain point of the local environment. This illumination capability may help rescuers reach a person in need of medical attention and apply medical assistance to the person.
    Type: Application
    Filed: February 26, 2013
    Publication date: July 4, 2013
    Applicant: Physio-Control, Inc.
    Inventors: Mark Frank, Jil Cruz, Micha Coleman, Benjamin A. Flugstad, Fred W. Chapman
  • Patent number: 8417327
    Abstract: When a defibrillator selects a dosage of energy or current to be delivered to a patient, the defibrillator selects an excitation current frequency and applies the excitation current at the selected frequency to the patient. The frequency of the excitation current is selected as a function of the dosage to be delivered. The patient's response to the excitation current at the selected frequency will accurately reflect the impedance that the defibrillator will “see” when delivering the selected dosage of energy or current.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 9, 2013
    Assignee: Physio-Control, Inc.
    Inventors: Fred W. Chapman, Joseph L. Sullivan, Scott O. Schweizer
  • Patent number: 8386034
    Abstract: Embodiments of the present concept are directed to external defibrillators that include a utility light for use by one or more rescuers using the defibrillator. In one implementation, an external defibrillator has a housing, an energy storage module for storing an electrical charge, a defibrillation port for guiding the stored electrical charge to a person, and a processor for determining when to guide the electrical charge. The defibrillator also includes a user interface that includes a screen showing indications by light, and a separate utility light coupled to the housing via a light-coupling structure. The utility light is structured to generate and cast a beam of light with a beam divergence angle of no more than 160 degrees in order to illuminate a certain point of the local environment. This illumination capability may help rescuers reach a person in need of medical attention and apply medical assistance to the person.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: February 26, 2013
    Assignee: Physio-Control, Inc.
    Inventors: Mark Frank, Jil Cruz, Micha Coleman, Benjamin A. Flugstad, Fred W. Chapman
  • Publication number: 20120071940
    Abstract: Embodiments of the present concept are directed to external defibrillators that include a utility light for use by one or more rescuers using the defibrillator. In one implementation, an external defibrillator has a housing, an energy storage module for storing an electrical charge, a defibrillation port for guiding the stored electrical charge to a person, and a processor for determining when to guide the electrical charge. The defibrillator also includes a user interface that includes a screen showing indications by light, and a separate utility light coupled to the housing via a light-coupling structure. The utility light is structured to generate and cast a beam of light with a beam divergence angle of no more than 160 degrees in order to illuminate a certain point of the local environment. This illumination capability may help rescuers reach a person in need of medical attention and apply medical assistance to the person.
    Type: Application
    Filed: April 14, 2011
    Publication date: March 22, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Mark Frank, Jil Cruz, Micha Coleman, Benjamin A. Flugstad, Fred W. Chapman
  • Patent number: 8135460
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator using a measurement of elapsed time. The present invention provides a defibrillator with a timer function. Upon activation of the defibrillator, an internal timer begins to run. By closely associating the activation of the defibrillator with the onset of the patient's attack, and by making allowances for inherent time differences between these events, the timer provides a measure of the elapsed time between the onset of the patient's emergency and the presentation of the defibrillator at the patient's side. Using this measure of elapsed time, the defibrillator determines an appropriate treatment therapy, such as CPR or defibrillation therapy.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 13, 2012
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Daniel W. Piraino
  • Publication number: 20120016279
    Abstract: Embodiments of the present concept are directed to CPR chest compression machines that include a sensor to detect a parameter about a patient, such as an indication of patient recovery, and include a processor that determines whether to cease series of successive compressions on the patient in response to the detected parameter.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Inventors: Isabelle L. Banville, Fred W. Chapman, Joseph L. Sullivan, Steven Duke
  • Patent number: 8090440
    Abstract: An external defibrillator is customized for at least one person, i.e., an anticipated patient, through creation of a profile for the anticipated patient that allows the defibrillator and users of the defibrillator to provide customized treatment to the patient. The profile may include treatment parameters for the anticipated patient, such as defibrillation therapy parameters selected for the patient. The profile may also include a baseline recording of a physiological parameter of the patient, and medical history and personal information regarding the patient. In some embodiments, the external defibrillator stores a profile for each of one or more anticipated patients within a memory. In other embodiments, a profile for an anticipated patient is stored within a medium associated with that anticipated patient. The medium may, for example, be a removable medium for external defibrillators.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 3, 2012
    Assignee: Physio Control, Inc.
    Inventors: Fred W. Chapman, Richard C. Nova, David Robert Hampton, James M. Owen, Robert Niskanen, John Carlton Daynes, Ronald Eugene Stickney, Rene Ann Young Mitchell, Gregory T. Kavounas
  • Patent number: 8090439
    Abstract: An external defibrillator is customized for at least one person, i.e., an anticipated patient, through creation of a profile for the anticipated patient that allows the defibrillator and users of the defibrillator to provide customized treatment to the patient. The profile may include treatment parameters for the anticipated patient, such as defibrillation therapy parameters selected for the patient. The profile may also include a baseline recording of a physiological parameter of the patient, and medical history and personal information regarding the patient. In some embodiments, the external defibrillator stores a profile for each of one or more anticipated patients within a memory. In other embodiments, a profile for an anticipated patient is stored within a medium associated with that anticipated patient. The medium may, for example, be a removable medium for external defibrillators.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 3, 2012
    Assignee: Physio Control, Inc.
    Inventors: Fred W. Chapman, Richard C. Nova, David Robert Hampton, James M. Owen, Robert Niskanen, John Carlton Daynes, Ronald Eugene Stickney, Rene Ann Young Mitchell, Gregory T. Kavounas
  • Patent number: 8060199
    Abstract: A system is disclosed wherein patient data, such as an electrocardiogram (“ECG”) signal or a chest impedance measurement signal, collected by a defibrillator device during a resuscitation event is analyzed and processed by a computing device to provide an assessment of CPR administered during the event. The CPR assessment results in one or more CPR figures of merit that relate to temporal characteristics of the CPR relative to the duration of the event. In one embodiment, the CPR figure of merit represents a percentage of the event period during which chest compressions were administered to the patient.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 15, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman
  • Patent number: 8036742
    Abstract: The invention is directed to techniques for attempting to restore a patient to a normal sinus rhythm. In a patient experiencing asystole or pulseless electrical activity, defibrillation therapy may be ineffective. The invention is directed to techniques for delivering one or more shocks to induce ventricular fibrillation in the patient, followed by one or more defibrillation shocks to restore normal sinus rhythm. A defibrillator may deliver the fibrillation and defibrillation therapies. The invention may also include techniques for estimating the probability that the patient will respond favorably to the defibrillation therapy, and delivering defibrillation therapy when the therapy has a good probability of success.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: October 11, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Robert G. Walker
  • Patent number: 7957799
    Abstract: An external cardiac medical device for delivering Cardiac Potentiation Therapy (CPT). Techniques used with the device include initial diagnosis of the patient, delivery of the CPT, and configuration of the external device, so that CPT can be effectively and efficiently provided. In particular, these techniques include initially determining whether a patient should receive CPT, how to set the coupling interval for delivering CPT, how to configure the external medical device to deliver CPT stimulation pulses while not adversely affecting the device's ability to sense a patient's cardiac parameters and/or signals.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: June 7, 2011
    Assignee: Medtronic, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Robert G. Walker, William J. Havel, D. Curtis Deno
  • Publication number: 20100016910
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator using a measurement of elapsed time. The present invention provides a defibrillator with a timer function. Upon activation of the defibrillator, an internal timer begins to run. By closely associating the activation of the defibrillator with the onset of the patient's attack, and by making allowances for inherent time differences between these events, the timer provides a measure of the elapsed time between the onset of the patient's emergency and the presentation of the defibrillator at the patient's side. Using this measure of elapsed time, the defibrillator determines an appropriate treatment therapy, such as CPR or defibrillation therapy.
    Type: Application
    Filed: September 25, 2009
    Publication date: January 21, 2010
    Applicant: Medtronic Emergency Response Systems, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Daniel W. Piraino
  • Patent number: 7630762
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator using a measurement of elapsed time. The present invention provides a defibrillator with a timer function. Upon activation of the defibrillator, an internal timer begins to run. By closely associating the activation of the defibrillator with the onset of the patient's attack, and by making allowances for inherent time differences between these events, the timer provides a measure of the elapsed time between the onset of the patient's emergency and the presentation of the defibrillator at the patient's side. Using this measure of elapsed time, the defibrillator determines an appropriate treatment therapy, such as CPR or defibrillation therapy.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: December 8, 2009
    Assignee: Medtronic Emergency Response Systems, Inc.
    Inventors: Joseph L. Sullivan, Fred W. Chapman, Daniel W. Piraino