Patents by Inventor Frederic P. Stratton

Frederic P. Stratton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11117800
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 14, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Deborah J. Kirby, Raviv Perahia, Hung Nguyen, Frederic P. Stratton, David T. Chang
  • Publication number: 20190315621
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 17, 2019
    Applicant: HRL Laboratories, LLC
    Inventors: Deborah J. KIRBY, Raviv PERAHIA, Hung NGUYEN, Frederic P. STRATTON, David T. CHANG
  • Patent number: 10308505
    Abstract: A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: June 4, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Deborah J. Kirby, Raviv Perahia, Hung Nguyen, Frederic P. Stratton, David T. Chang
  • Patent number: 10141906
    Abstract: A method of fabricating a resonator includes providing a first quartz substrate, forming a metallic etch stop on a first surface of the first quartz substrate; attaching, using a temporary adhesive, the first surface of the first quartz substrate to a second quartz substrate, etching an opening for a via in a second surface of the first quartz substrate to the metallic etch stop, forming a metal electrode on the second surface of the first quartz substrate, the metal electrode penetrating the via in the first quartz substrate to make ohmic contact with the metallic etch stop, bonding the metal electrode formed on the second surface of the first quartz substrate to a pad formed on a host substrate; and dissolving the temporary adhesive to release the second quartz substrate from the first quartz substrate, wherein the first quartz substrate and the host substrate each comprise crystalline quartz.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: November 27, 2018
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Frederic P. Stratton, Hung Nguyen, Randall L. Kubena
  • Patent number: 9985198
    Abstract: High-yield fabrication methods are provided for making quartz resonators having thicknesses ranging from one micrometer to several hundred micrometers and thus covering the frequency range from HF to UHF. Plasma dry etching is used to form arbitrary resonator geometries. The quartz resonator structure and the through-quartz vias are formed concurrently. The method includes bonding a quartz device wafer to a quartz handle wafer with a temporary adhesive. Mesa structures formed by plasma dry etching enable the resonators to achieve high-Q operation with energy trapping/mode confinement. A thermo-compression bond integrates the quartz resonators to a host wafer (e.g., an oscillator ASIC) to form oscillators. Silicon cap wafers are bonded over the resonators to the ASIC to provide wafer scale hermetic encapsulation of the quartz oscillators.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: May 29, 2018
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Frederic P. Stratton, Hung Nguyen, Randall L. Kubena
  • Patent number: 8765615
    Abstract: A quart resonator for use in lower frequency applications (typically lower than the higher end of the UHF spectrum) where relatively thick quartz members, having a thickness greater than ten microns, are called for.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 1, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Frederic P. Stratton, Hung Nguyen, Randall L. Kubena
  • Patent number: 7923689
    Abstract: In one embodiment, a multiband infrared (IR) detector array includes a metallic surface having a plurality of periodic resonant structures configured to resonantly transmit electromagnetic energy in distinct frequency bands. A plurality of pixels on the array each include at least first and second resonant structures corresponding to first and second wavelengths. For each pixel, the first and second resonant structures have an associated detector and are arranged such that essentially all of the electromagnetic energy at the first wavelength passes through the first resonant structure onto the first detector, and essentially all of the electromagnetic energy at the second wavelength passes through the second resonant structure onto the second detector. In one embodiment, the resonant structures are apertures or slots, and the IR detectors may be mercad telluride configured to absorb radiation in the 8-12 ?m band. Detection of more than two wavelengths may be achieved by proper scaling.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Raytheon Company
    Inventors: Deborah J. Kirby, Terence J. De Lyon, David T. Chang, Frederic P. Stratton, Daniel J. Gregoire, Jeffery J. Puschell
  • Patent number: 7851971
    Abstract: A method for fabricating a low frequency quartz resonator includes metalizing a top-side of a quartz wafer with a metal etch stop, depositing a first metal layer over the metal etch stop, patterning the first metal layer to form a top electrode, bonding the quartz wafer to a silicon handle, thinning the quartz wafer to a desired thickness, depositing on a bottom-side of the quartz wafer a hard etch mask, etching the quartz wafer to form a quartz area for the resonator and to form a via through the quartz wafer, removing the hard etch mask without removing the metal etch stop, forming on the bottom side of the quartz wafer a bottom electrode for the low frequency quartz resonator, depositing metal for a substrate bond pad onto a host substrate wafer, bonding the quartz resonator to the substrate bond pad, and removing the silicon handle.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: December 14, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Randall L. Kubena, Frederic P. Stratton, Pamela R. Patterson
  • Publication number: 20100276595
    Abstract: In one embodiment, a multiband infrared (IR) detector array includes a metallic surface having a plurality of periodic resonant structures configured to resonantly transmit electromagnetic energy in distinct frequency bands. A plurality of pixels on the array each include at least first and second resonant structures corresponding to first and second wavelengths. For each pixel, the first and second resonant structures have an associated detector and are arranged such that essentially all of the electromagnetic energy at the first wavelength passes through the first resonant structure onto the first detector, and essentially all of the electromagnetic energy at the second wavelength passes through the second resonant structure onto the second detector. In one embodiment, the resonant structures are apertures or slots, and the IR detectors may be mercad telluride configured to absorb radiation in the 8-12 ?m band. Detection of more than two wavelengths may be achieved by proper scaling.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: RAYTHEON COMPANY
    Inventors: Deborah J. Kirby, Terence J. De Lyon, David T. Chang, Frederic P. Stratton, Daniel J. Gregoire, Jeffery J. Puschell
  • Patent number: 7671431
    Abstract: The present invention relates to a method of manufacturing a cloverleaf microgyroscope containing an integrated post comprising: attaching a post wafer to a resonator wafer, forming a bottom post from the post wafer being attached to the resonator wafer, preparing a base wafer with through-wafer interconnects, attaching the resonator wafer to the base wafer, wherein the bottom post fits into a post hole in the base wafer, forming a top post from the resonator wafer, wherein the bottom and top post are formed symmetrically around the same axis, and attaching a cap wafer on top of the base wafer.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: March 2, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Frederic P. Stratton, David T. Chang
  • Publication number: 20100033062
    Abstract: A method for fabricating a low frequency quartz resonator includes metalizing a top-side of a quartz wafer with a metal etch stop, depositing a first metal layer over the metal etch stop, patterning the first metal layer to form a top electrode, bonding the quartz wafer to a silicon handle, thinning the quartz wafer to a desired thickness, depositing on a bottom-side of the quartz wafer a hard etch mask, etching the quartz wafer to form a quartz area for the resonator and to form a via through the quartz wafer, removing the hard etch mask without removing the metal etch stop, forming on the bottom side of the quartz wafer a bottom electrode for the low frequency quartz resonator, depositing metal for a substrate bond pad onto a host substrate wafer, bonding the quartz resonator to the substrate bond pad, and removing the silicon handle.
    Type: Application
    Filed: October 12, 2009
    Publication date: February 11, 2010
    Applicant: HRL LABORATORIES, LLC
    Inventors: David T. CHANG, Randall L. KUBENA, Frederic P. STRATTON, Pamela R. PATTERSON
  • Patent number: 7647688
    Abstract: A method for fabricating a low frequency quartz resonator includes metalizing a top-side of a quartz wafer with a metal etch stop, depositing a first metal layer over the metal etch stop, patterning the first metal layer to form a top electrode, bonding the quartz wafer to a silicon handle, thinning the quartz wafer to a desired thickness, depositing on a bottom-side of the quartz wafer a hard etch mask, etching the quartz wafer to form a quartz area for the resonator and to form a via through the quartz wafer, removing the hard etch mask without removing the metal etch stop, forming on the bottom side of the quartz wafer a bottom electrode for the low frequency quartz resonator, depositing metal for a substrate bond pad onto a host substrate wafer, bonding the quartz resonator to the substrate bond pad, and removing the silicon handle.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: January 19, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Randall L. Kubena, Frederic P. Stratton, Pamela R. Patterson
  • Patent number: 7202100
    Abstract: The present invention relates to a method of manufacturing a cloverleaf microgyroscope containing an integrated post comprising: attaching a post wafer to a resonator wafer, forming a bottom post from the post wafer being attached to the resonator wafer, attaching the resonator wafer to a base wafer, wherein the bottom post fits into a post hole in the base wafer, forming a top post from the resonator wafer, wherein the bottom and top post are formed symmetrically around the same axis, and attaching a cap wafer on top of the base wafer. The present invention relates further to a gyroscope containing an integrated post with on or off-chip electronics.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: April 10, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Frederic P. Stratton, David T. Chang
  • Patent number: 7015060
    Abstract: The present invention relates to a method of manufacturing a cloverleaf microgyroscope containing an integrated post comprising: attaching a post wafer to a resonator wafer, forming a bottom post from the post wafer being attached to the resonator wafer, preparing a base wafer with through-wafer interconnects, attaching the resonator wafer to the base wafer, wherein the bottom post fits into a post hole in the base wafer, forming a top post from the resonator wafer, wherein the bottom and top post are formed symmetrically around the same axis, and attaching a cap wafer on top of the base wafer.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 21, 2006
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Frederic P. Stratton, David T. Chang
  • Patent number: 5501822
    Abstract: A 3-dimensional opto-electronic system employs an optical communications channel between spaced circuit substrates. The beam from an in-line laser on one substrate is deflected by a turning mirror that is monolithically integrated on the substrate along with the laser and its associated electronic circuitry, and directed to an optical detector on another substrate. The deflection is accomplished with a turning mirror that is specially fabricated with a focused ion beam (FIB) so that it focuses or collimates as well as deflects the laser beam onto the photodetector. The mirror is initially formed with a flat surface, and is thereafter processed with the FIB to produce focusing curvatures in both x and y directions. The mirror is preferably spaced away from the laser, and is illuminated over substantially the full laser height to maximize its focal length for a given reflected spot size.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: March 26, 1996
    Assignee: Hughes Aircraft Company
    Inventors: Randy L. Kubena, Frederic P. Stratton, Gary M. Atkinson, Hugh McNulty, Jr., James W. Ward
  • Patent number: 5335243
    Abstract: A 3-dimensional opto-electronic system employs an optical communications channel between spaced circuit substrates. The beam from an in-line laser on one substrate is deflected by a turning mirror that is monolithically integrated on the substrate along with the laser and its associated electronic circuitry, and directed to an optical detector on another substrate. The deflection is accomplished with a turning mirror that is specially fabricated with a focused ion beam (FIB) so that it focuses or collimates as well as deflects the laser beam onto the photodetector. The mirror is initially formed with a flat surface, and is thereafter processed with the FIB to produce focusing curvatures in both x and y directions. The mirror is preferably spaced away from the laser, and is illuminated over substantially the full laser height to maximize its focal length for a given reflected spot size.
    Type: Grant
    Filed: November 4, 1992
    Date of Patent: August 2, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Randy L. Kubena, Frederic P. Stratton, Gary M. Atkinson, Hugh McNulty, Jr., James W. Ward