Patents by Inventor Friedrich Prinz

Friedrich Prinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080102324
    Abstract: A simple, inexpensive and highly efficient fuel cell has boundary structures made of a photo-sensitive material in combination with selective patterning. Printed circuit board (PCB) fabrication techniques combine boundary structures with two and three dimensional electrical flow path. Photo-sensitive material and PCB fabrication techniques are alternately or combined utilized for making micro-channel structures or micro stitch structures for substantially reducing dead zones of the diffusion layer while keeping fluid flow resistance to a minimum. The fuel cell assembly is free of mechanical clamping elements. Adhesives that may be conductively contaminated and/or fiber-reinforced provide mechanical and eventual electrical connections, and sealing within the assembly. Mechanically supporting backing layers are pre-fabricated with a natural bend defined in combination with the backing layers' elasticity to eliminate massive support plates and assist the adhesive bonding.
    Type: Application
    Filed: December 19, 2007
    Publication date: May 1, 2008
    Inventors: Jun Sasahara, Daniel Braithwaite, Suk-Won Cha, Tibor Fabian, Tadahiro Kubota, Nariaki Kuriyama, Sang-Joon Lee, Ryan O'Hayre, Friedrich Prinz, Yuji Saito, Toshifumi Suzuki
  • Publication number: 20080102325
    Abstract: A simple, inexpensive and highly efficient fuel cell has boundary structures made of a photo-sensitive material in combination with selective patterning. Printed circuit board (PCB) fabrication techniques combine boundary structures with two and three dimensional electrical flow path. Photo-sensitive material and PCB fabrication techniques are alternately or combined utilized for making micro-channel structures or micro stitch structures for substantially reducing dead zones of the diffusion layer while keeping fluid flow resistance to a minimum. The fuel cell assembly is free of mechanical clamping elements. Adhesives that may be conductively contaminated and/or fiber-reinforced provide mechanical and eventual electrical connections, and sealing within the assembly. Mechanically supporting backing layers are pre-fabricated with a natural bend defined in combination with the backing layers' elasticity to eliminate massive support plates and assist the adhesive bonding.
    Type: Application
    Filed: December 19, 2007
    Publication date: May 1, 2008
    Inventors: Jun Sasahara, Daniel Braithwaite, Suk-Won Cha, Tibor Fabian, Tadahiro Kubota, Nariaki Kuriyama, Sang-Joon Lee, Ryan O'Hayre, Friedrich Prinz, Yuji Saito, Toshifumi Suzuki
  • Publication number: 20070184322
    Abstract: A membrane-electrode assembly for a solid oxide fuel cell is provided. The membrane-electrode assembly has a substantially constant-thickness electrolyte layer. The electrolyte layer distinguishes first and second electrolyte layer surfaces arranged in a three-dimensional pattern with opposite first and second planar pattern surfaces. The three-dimensional pattern has a first set of features extending inward from the first planar pattern surface. It has a second set of features extending inward from the second planar pattern surface opposite to the first planar pattern surface. A first electrode layer is adjacent and conforming to the first electrolyte layer surface. At least one mechanical support structure exists within some or all of the second set of features. A second electrode layer is adjacent and conforming to the second electrolyte layer surface and to at least one mechanical support structure. The membrane-electrode assembly is deposited on a substrate with at least one through hole.
    Type: Application
    Filed: January 18, 2007
    Publication date: August 9, 2007
    Inventors: Hong Huang, Pei-Chen Su, Friedrich Prinz, Masafumi Nakamura, Timothy Holme, Rainer Fasching, Yuji Saito
  • Publication number: 20070167804
    Abstract: A micromanipulator comprising a tubular structure and a structural compliance mechanism that are formed from a tube made of an elastic and/or superelastic material. The micromanipulator is useful for intravascular interventional applications and particularly ultrasonic imaging when coupled with an ultrasound transducer. Also disclosed are medical devices for crossing vascular occlusions using radio-frequency energy or rotary cutting, preferably under the guidance of real-time imaging of the occlusion, as well as accompanying methods.
    Type: Application
    Filed: August 24, 2006
    Publication date: July 19, 2007
    Inventors: Byong-Ho Park, Stephen Rudy, Friedrich Prinz, David Liang
  • Publication number: 20070022878
    Abstract: Solid oxide fuel cells selectively transport oxygen ions through an electrolyte membrane. The maximum oxygen ion transport rate limits the power density of the fuel cell. By ion irradiating the electrolyte membrane and/or the cathode, the oxygen absorption, dissociation, and incorporation rates can be improved, leading to higher ion transport rates and better fuel cell performance.
    Type: Application
    Filed: July 14, 2006
    Publication date: February 1, 2007
    Inventors: Rojana Pornprasertsuk, Jeremy Cheng, Yuji Saito, Friedrich Prinz
  • Publication number: 20060284085
    Abstract: The present invention provides nano-patterning based on flow of an ion current within an ionic conductor to bring ions in proximity to a microscope probe tip touching a surface of the conductor. These ions are then electrochemically reduced to form one or more features on the surface. Ion current flow and the electrochemical reaction are driven by an electrical potential difference between the tip and the ionic conductor. Such features can be erased by reversing the polarity of the potential difference. Indentations can be formed by mechanically removing features formed as described above. The ions in the ion current can be provided by the ionic conductor and/or by oxidation at a counter electrode.
    Type: Application
    Filed: July 20, 2005
    Publication date: December 21, 2006
    Inventors: Minhwan Lee, Ryan O'Hayre, Turgut Gur, Friedrich Prinz
  • Publication number: 20060273004
    Abstract: An improved two-step replication process for fabrication of porous metallic membranes is provided. A negative of a porous non-metallic template is made by infiltration of a liquid precursor into the template, curing the precursor to form a solid negative, and removing the template to expose the negative. Metal is deposited to surround the exposed negative. Removal of the negative provides a porous metallic membrane having pores which replicate the pores of the original template membrane. The negative is kept immersed in a liquid at all times between removing the template and depositing the metal. This immersion eliminates damage to the negative that would be incurred in drying the negative out between these processing steps. Another aspect of the invention is metallic membranes prepared according to the preceding method. For example, metallic membranes having pores smaller on one side than on the other side of the membrane are provided.
    Type: Application
    Filed: August 9, 2006
    Publication date: December 7, 2006
    Inventors: Sangkyun Kang, Young-Il Park, Friedrich Prinz, Suk-Won Cha, Yuji Saito, Ali Farvid, Pei-Chen Su
  • Publication number: 20060269475
    Abstract: Improved controlled therapy is provided with a polymer multi-layer structure having a predetermined micro-fabricated spatial pattern (e.g., reservoirs and channels). More specifically, all geometrical details of the spatial pattern are substantially predetermined. The increased control of pattern geometry provided by the invention allows for improved control of therapy. In preferred embodiments, the polymer multi-layer structure of the invention is biodegradable, but has an in vivo lifetime that is greater than the duration of the therapy being provided. Thus, the geometrical pattern of the polymer structure that controls delivery of the therapy persists without significant change during therapy, and the structure degrades after completion of therapy. In this manner, possible interference of degradation by-products with therapy is minimized, and delivery of therapy does not depend on details of how degradation proceeds.
    Type: Application
    Filed: April 11, 2006
    Publication date: November 30, 2006
    Inventors: WonHyoung Ryu, Rainer Fasching, Friedrich Prinz, Ralph Greco
  • Publication number: 20060251950
    Abstract: A direct methanol fuel cell is described. The DMFC uses a solid electrolyte that prevents methanol crossover. Optional chemical barriers may be employed to prevent CO2 contamination of the electrolyte.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 9, 2006
    Inventors: Friedrich Prinz, Turgut Gur, Joon Shim
  • Publication number: 20060213259
    Abstract: Sensors and systems for electrical, electrochemical, or topographical analysis, as well as methods of fabricating these sensors are provided. The sensors include a cantilever and one or more probes, each of which has an electrode at its tip. The tips of the probes are sharp, with a radius of curvature of less than about 50 nm. In addition, the probes have a high aspect ratio of more than about 19:1. The sensors are suitable for both Atomic Force Microscopy and Scanning Electrochemical Microscopy.
    Type: Application
    Filed: September 22, 2005
    Publication date: September 28, 2006
    Inventors: Friedrich Prinz, Ye Tao, Rainer Fasching, Ralph Greco, Kyle Hammerick, Robert Smith
  • Publication number: 20060189142
    Abstract: This document describes fabrication method for a thin film electrolyte membrane and electrochemical devices including the membrane. As an electrolyte becomes thinner, the conductance of the electrolyte increases. Consequently, the performances of solid-state ionic devices like fuel cells, gas sensors and catalytic supporters, can be improved and operating temperature can be lowered.
    Type: Application
    Filed: June 28, 2005
    Publication date: August 24, 2006
    Inventors: Yuji Saito, Friedrich Prinz, Masafumi Nakamura, Hong Huang, Rainer Fasching
  • Publication number: 20060166064
    Abstract: This document describes the nano-scaling effects of solid-state oxygen-ion conductors when the thickness of an ionic conductor membrane as well as size of the grains within the membrane are scaled down to less than 200 nm. By using such solid-state oxygen-ion conductor membranes as solid-state electrolytes, the performances of solid-state ionic devices like fuel cells, gas sensors and catalytic supporters, can be improved and operating temperature can be lowered.
    Type: Application
    Filed: June 28, 2005
    Publication date: July 27, 2006
    Inventors: Hong Huang, Friedrich Prinz, Masafumi Nakamura, Yuji Saito
  • Publication number: 20060029851
    Abstract: Water flooding at the cathode of a fuel cell is a common problem in fuel cells. By integrating an electroosmotic (EO) pump to remove product water from the cathode area, fuel cell power can be increased. Integration of EO pumps transforms the designs of air channel and air breathing cathodes, reducing air pumping power loads and increasing oxidant transport. Hydration of gas streams, management of liquid reactants, and oxidant delivery can also be accomplished with integrated electroosmotic pumps. Electroosmotic pumps have no moving parts, can be integrated as a layer of the fuel cell, and scale with centimeter to micron scale fuel cells.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 9, 2006
    Inventors: Juan Santiago, Jonathan Posner, Friedrich Prinz, Tibor Fabian, John Eaton, Suk-Won Cha, Cullen Buie, Daejoogn Kim, Hideaki Tsuru, Jun Sasahara, Tadahiro Kubota, Yuji Saito
  • Publication number: 20060017534
    Abstract: A bistable minivalve includes a movable component, an actuator that is electrostatically, magnetically, or mechanically coupled to the movable component for controllably switching the movable component between open and closed states, and a casing providing structural support. The movable component has an actuation surface [300] movably positioned in the valve conduit and a bistable element attached to the actuation surface providing mechanical stability to the open and closed states of the movable component. The bistable element may be realized as a pair of elastic buckling beams [302, 304] attached at their midpoints to opposite sides of the actuation surface. Optionally, there may also be elastic support beams [306, 308] attached at their endpoints to the actuation surface and attached at their midpoints to the elastic buckling beams.
    Type: Application
    Filed: June 10, 2005
    Publication date: January 26, 2006
    Inventors: Dino Accoto, Friedrich Prinz, Tibor Fabian, WonHyoung Ryu, Jun Sasahara, Hideaki Tsuru, Georg Brasseur
  • Publication number: 20060008696
    Abstract: A membrane electrode assembly (MEA) having a nano-tubular patterned structure and having solid (instead of porous) electrode layers is provided. Increased mechanical strength is provided by the use of solid electrode layers. The electrode layers are sufficiently thin to permit the flow of reactants to the electrolyte. The nano-tubular pattern includes multiple closed-end tubes and increase the reaction area to volume ratio of the MEA. The nano-tubular pattern also serves to increase mechanical strength, especially in a preferred honey-comb like arrangement of the closed-end tubes. A catalyst is preferably disposed on the anode and cathode surfaces of the MEA, and is preferably in the form of separated catalyst islands in order to increase reaction area. MEAs according to the invention can be fabricated by layer deposition on a patterned template. Atomic layer deposition is a preferred deposition technique.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 12, 2006
    Inventors: Suk-Won Cha, Stacey Bent, Tim Holme, Xirong Jiang, Friedrich Prinz, Yuji Saito
  • Publication number: 20050242022
    Abstract: An improved two-step replication process for fabrication of porous metallic membranes is provided. A negative of a porous non-metallic template is made by infiltration of a liquid precursor into the template, curing the precursor to form a solid negative, and removing the template to expose the negative. Metal is deposited to surround the exposed negative. Removal of the negative provides a porous metallic membrane having pores which replicate the pores of the original template membrane. The negative is kept immersed in a liquid at all times between removing the template and depositing the metal. This immersion eliminates damage to the negative that would be incurred in drying the negative out between these processing steps. Another aspect of the invention is metallic membranes prepared according to the preceding method. For example, metallic membranes having pores smaller on one side than on the other side of the membrane are provided.
    Type: Application
    Filed: March 25, 2005
    Publication date: November 3, 2005
    Inventors: Sangkyun Kang, Yong-Il Park, Friedrich Prinz, Suk-Won Cha, Yuji Saito, Ali Farvid, Pei-Chen Su
  • Publication number: 20050208271
    Abstract: Solvent bonding by exposure to a solvent vapor is provided. Vapor phase solvent bonding provides accurate and precise control of the amount of solvent provided to the polymer bodies or objects being bonded. Such precision control of solvent quantity enables solvent bonding to be performed in a manner that does not damage or destroy micro-patterns present in the polymer bodies being bonded. Vapor solvent bonding can be performed in two regimes: saturated and linear. In the saturated regime, the temperature of a polymer body surface is less than the condensation temperature of a polymer vapor. Thus, a liquid condensate will tend to form in this regime. In the linear regime, the temperature of a polymer body surface is greater than the condensation temperature of the polymer vapor. Although a liquid condensate will not form, bonding can still be performed.
    Type: Application
    Filed: March 16, 2005
    Publication date: September 22, 2005
    Inventors: Rainer Fasching, WonHyoung Ryu, Friedrich Prinz
  • Publication number: 20050206048
    Abstract: Methods for compression molding through holes in polymer layers are provided, as are the resulting patterned polymer layers. Two key aspects of the invention are provision of a mold and substrate having different mechanical hardness, and provision of room for local flow of material. These aspects of the invention facilitate formation of through holes by compression molding that are not blocked or partially blocked by undesirable material. These polymer layers can be formed into three dimensional patterned structures by bonding patterned layers together. Since the layers include through holes, a three-dimensional polymer pattern can be formed. These patterned polymer layers and three dimensionally patterned polymer constructs have a wide variety of applications. For example, these constructs can be used for fabrication of micro-fluidic devices, and/or can be used for various medical and biological applications including drug delivery devices and tissue engineering devices.
    Type: Application
    Filed: March 11, 2005
    Publication date: September 22, 2005
    Inventors: WonHyoung Ryu, Seoung Bai, Kyle Hammerick, Robert Smith, Ralph Greco, Friedrich Prinz, Rainer Fasching
  • Patent number: 6944360
    Abstract: A sensor embedded in a high temperature metal is incorporated into a sensing system for measuring temperature, strain, or other properties of a metal structure. An optical system transmits light to and receives output signals from the sensor for analysis. With rotating structures, an optical fiber lead transmits light between the sensor and external surface of the structure along its rotational axis, allowing the lead to remain fixed with respect to the optical system as the structure rotates at high speeds.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 13, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Xiaochun Li, Friedrich Prinz, Anastasios Golnas
  • Patent number: 6876785
    Abstract: A method for embedding fiber optic sensors in a high melting temperature metal structure produces embedded sensors that are uniformly and closely bonded with the metal and do not slip upon metal expansion and contraction. The structure is built in layers onto the sensor. On top of a first thin sputter-coated metallic layer, approximately 1-3 ?m thick, is electroplated a second thin layer, approximately 0.25-2 mm thick. Finally, a metal structure is built around the thin metallic layers by laser cladding, casting, welding, or other method.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: April 5, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Xiaochun Li, Friedrich Prinz, Anastasios Golnas