Patents by Inventor Fulin Xiong

Fulin Xiong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7952786
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, and a coating of liquid or solid lubricant on at least one of the contact surfaces, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant is disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to increase the usable lifetime of the liquid or solid lubricant coating on the contact surfaces. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: May 31, 2011
    Assignee: Miradia Inc.
    Inventors: Dongmin Chen, Fulin Xiong
  • Patent number: 7723812
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: May 25, 2010
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, Fulin Xiong, Spencer Worley
  • Publication number: 20090284823
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, and a coating of liquid or solid lubricant on at least one of the contact surfaces, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant is disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to increase the usable lifetime of the liquid or solid lubricant coating on the contact surfaces. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation.
    Type: Application
    Filed: April 23, 2008
    Publication date: November 19, 2009
    Inventors: Dongmin Chen, Fulin Xiong
  • Patent number: 7616370
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: November 10, 2009
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, Fulin Xiong, Spencer Worley
  • Patent number: 7580174
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to reduce stiction-related forces between the first contact surface and the second contact surface. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 25, 2009
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, Fulin Xiong
  • Patent number: 7471439
    Abstract: Embodiments of the present invention generally relate to a process of forming a device that has an improved usable lifetime due to the addition of a gas-phase lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: December 30, 2008
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, Fulin Xiong
  • Patent number: 7463404
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: December 9, 2008
    Assignee: Miradia, Inc.
    Inventors: Dongmin Chen, Fulin Xiong
  • Patent number: 7372615
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to reduce stiction-related forces between the first contact surface and the second contact surface. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 13, 2008
    Assignee: Miradia Inc.
    Inventors: Dongmin Chen, Fulin Xiong
  • Publication number: 20070115530
    Abstract: Embodiments of the present invention generally relate to a process of forming a device that has an improved usable lifetime due to the addition of a gas-phase lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong
  • Publication number: 20070115531
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to reduce stiction-related forces between the first contact surface and the second contact surface. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Application
    Filed: March 24, 2006
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong
  • Publication number: 20070114882
    Abstract: One embodiment of an micromechanical device includes a first contact surface, a moveable component having a second contact surface, where the second contact surface interacts with the first contact surface during device operation, and a gas-phase lubricant disposed between the first contact surface and the second contact surface, where the gas-phase lubricant is adapted to reduce stiction-related forces between the first contact surface and the second contact surface. One advantage of the disclosed device is that a gas-phase lubricant has a high diffusion rate and, therefore, is self-replenishing, meaning that it can quickly move back into a contact region after being physically displaced from the region by the contacting surfaces of the device during operation. Consequently, the gas-phase lubricant is more reliable than conventional solid or liquid lubricants in preventing stiction-related device failures.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong
  • Publication number: 20070117244
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong, William Worley
  • Publication number: 20070115532
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong
  • Publication number: 20070114883
    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 24, 2007
    Inventors: Dongmin Chen, Fulin Xiong, William Worley