Patents by Inventor Fumio Kawamura

Fumio Kawamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8038794
    Abstract: A method of manufacturing a group III-nitride crystal substrate including the steps of introducing an alkali-metal-element-containing substance, a group III-element-containing substance and a nitrogen-element-containing substance into a reactor, forming a melt containing at least the alkali metal element, the group III-element and the nitrogen element in the reactor, and growing group III-nitride crystal from the melt, and characterized by handling the alkali-metal-element-containing substance in a drying container in which moisture concentration is controlled to at most 1.0 ppm at least in the step of introducing the alkali-metal-element-containing substance into the reactor is provided. A group III-nitride crystal substrate attaining a small absorption coefficient and the method of manufacturing the same, as well as a group III-nitride semiconductor device can thus be provided.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 18, 2011
    Assignees: Sumitomo Electric Industries, Ltd.
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota
  • Patent number: 8025728
    Abstract: A seed crystal is immersed in a melt containing a flux and a single crystal material in a growth vessel to produce a nitride single crystal on the seed crystal. A difference (TS-TB) of temperatures at a gas-liquid interface of the melt (TS) and at the lowermost part of the melt (TB) is set to 1° C. or larger and 8° C. or lower. Preferably, the substrate of seed crystal is vertically placed.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: September 27, 2011
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Mikiya Ichimura, Katsuhiro Imai, Chikashi Ihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 7959729
    Abstract: A production method is provided in which Group-III-element nitride single crystals that have a lower dislocation density and a uniform thickness and are transparent, high quality, large, and bulk crystals can be produced with a high yield. The method for producing Group-III-element nitride single crystals includes: heating a reaction vessel containing at least one metal element selected from the group consisting of an alkali metal and an alkaline-earth metal and at least one Group III element selected from the group consisting of gallium (Ga), aluminum (Al), and indium (In) to prepare a flux of the metal element; and feeding nitrogen-containing gas into the reaction vessel and thereby allowing the Group III element and nitrogen to react with each other in the flux to grow Group-III-element nitride single crystals, wherein the single crystals are grown, with the flux being stirred by rocking the reaction vessel, for instance.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: June 14, 2011
    Assignee: Osaka University
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Hidekazu Umeda
  • Patent number: 7905958
    Abstract: A method of manufacturing group III-nitride semiconductor crystal includes the steps of accommodating an alloy containing at least a group III-metal element and an alkali metal element in a reactor, introducing a nitrogen-containing substance in the reactor, dissolving the nitrogen-containing substance in an alloy melt in which the alloy has been melted, and growing group III-nitride semiconductor crystal is provided. The group III-nitride semiconductor crystal attaining a small absorption coefficient and an efficient method of manufacturing the same, as well as a group III-nitride semiconductor device attaining high light emission intensity can thus be provided.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 15, 2011
    Assignees: Sumitomo Electric Industries, Ltd.
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota
  • Publication number: 20110012070
    Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.
    Type: Application
    Filed: July 28, 2009
    Publication date: January 20, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Osamu YAMADA, Hisashi MINEMOTO, Kouichi HIRANAKA, Takeshi HATAKEYAMA, Takatomo SASAKI, Yusuke MORI, Fumio KAWAMURA, Yasuo KITAOKA
  • Publication number: 20100301358
    Abstract: The present invention provides a method for producing a semiconductor substrate, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal.
    Type: Application
    Filed: March 15, 2007
    Publication date: December 2, 2010
    Inventors: Naoki Shibata, Koji Hirata, Shiro Yamazaki, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 7842133
    Abstract: In a method of growing a single crystal by melting a raw material within a vessel under a nitrogenous and non-oxidizing atmosphere, the vessel is oscillated and the melted raw material is contacted with an agitation medium made of a solid unreactive with the melted raw material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: November 30, 2010
    Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki, Koji Hirata
  • Patent number: 7833347
    Abstract: A nitride single crystal is produced using a growth solution containing an easily oxidizable material. A crucible for storing the growth solution, a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen, and an oxygen absorber disposed inside the pressure vessel and outside the crucible are used to grow the nitride single crystal.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 16, 2010
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Makoto Iwai, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 7815733
    Abstract: A method of growing hexagonal boron nitride single crystal is provided. Hexagonal boron nitride single crystal is grown in calcium nitride flux by heating, or heating and then slowly cooling, boron nitride and a calcium series material in an atmosphere containing nitrogen. Bulk hexagonal boron nitride single crystal can thereby successfully be grown.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: October 19, 2010
    Assignees: NGK Insulators, Ltd.
    Inventors: Makoto Iwai, Katsuhiro Imai, Takatomo Sasaki, Fumio Kawamura, Minoru Kawahara, Hiroaki Isobe
  • Patent number: 7794539
    Abstract: A method for producing Group-III-element nitride crystals by which an improved growth rate is obtained and large high-quality crystals can be grown in a short time, a producing apparatus used therein, and a semiconductor element obtained using the method and the apparatus are provided. The method is a method for producing Group-III-element nitride crystals that includes a crystal growth process of subjecting a material solution containing a Group III element, nitrogen, and at least one of alkali metal and alkaline-earth metal to pressurizing and heating under an atmosphere of a nitrogen-containing gas so that the nitrogen and the Group III element in the material solution react with each other to grow crystals.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 14, 2010
    Assignees: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Yasuhito Takahashi
  • Patent number: 7754012
    Abstract: A method for manufacturing Group III nitride crystals with high quality is provided. By the method, a crystal raw material solution and gas containing nitrogen are introduced into a reactor vessel, which is heated, and crystals are grown in an atmosphere of pressure applied thereto. The gas is introduced from a gas supplying device to the reactor vessel through a gas inlet of the reactor vessel, and then is exhausted to the inside of a pressure-resistant vessel through a gas outlet of the reactor vessel. Since the gas is introduced directly to the reactor vessel, impurities attached to the pressure-resistant vessel and the like into the crystal growing site can be prevented. Further, the gas flows through the reactor vessel, to suppress aggregation of an evaporating alkali metal, etc., at the gas inlet and reduce flow of the metal vapor into the gas supplying device.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 13, 2010
    Assignees: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Hidekazu Umeda, Yasuhito Takahashi
  • Publication number: 20100126874
    Abstract: A spent oxide form nuclear fuel in a spent nuclear fuel assembly which has been taken out from a light water reactor is reacted with fluorine in fluorination treatment process and then separated into gaseous UF6 and solid converted fluoride. The UF6 is purified in UF6 treatment Process. In electrolysis using fused fluoride process, the converted fluoride is dissolved into a fused fluoride salt (a mixture of LiF and BeF2) filled into an electrolysis cell of an apparatus for electrolysis. A first electrode, which is an anode, and a second electrode, which is a cathode, are submerged into the fused fluoride. A mixture of the oxides Li2O and BeO are added to the fused fluoride. A metallic plutonium and a metallic uranium contained in the fused fluoride is deposited onto the second electrode by energizing of the first and second electrodes.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 27, 2010
    Inventors: Daisuke WATANABE, Akira Sasahira, Fumio Kawamura, Kuniyoshi Hoshino
  • Patent number: 7708833
    Abstract: An object of the invention is to carry out the flux method with improved work efficiency while maintaining the purity of flux at high level and saving flux material cost. The sodium-purifying apparatus includes a sodium-holding-and-management apparatus for maintaining purified sodium (Na) in a liquid state. Liquid sodium is supplied into a sodium-holding-and-management apparatus through a liquid-sodium supply piping maintained at 100° C. to 200° C. The sodium-holding-and-management apparatus further has an argon-gas-purifying apparatus for controlling the condition of argon (Ar) gas that fills the internal space thereof. Thus, by opening and closing a faucet at desired timing, purified liquid sodium (Na) supplied from the sodium-purifying apparatus can be introduced into a crucible as appropriate via the liquid-sodium supply piping, the sodium-holding-and-management apparatus, and the piping.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: May 4, 2010
    Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd.
    Inventors: Shiro Yamazaki, Koji Hirata, Takayuki Sato, Seiji Nagai, Katsuhiro Imai, Makoto Iwai, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Publication number: 20100093157
    Abstract: A GaN single crystal 20 is grown on a crystal growth surface of a seed crystal (GaN layer 13) through the flux method in a nitrogen (N2) atmosphere at 3.7 MPa and 870° C. employing a flux mixture including Ga, Na, and Li at about 870° C. Since the back surface of the template 10 is R-plane of the sapphire substrate 11, the template 10 is readily corroded or dissolved in the flux mixture from the back surface thereof. Therefore, the template 10 is gradually dissolved or corroded from the back surface thereof, resulting in separation from the semiconductor or dissolution in the flux. When the GaN single crystal 20 is grown to a sufficient thickness, for example, about 500 ?m or more, the temperature of the crucible is maintained at 850° C. to 880° C., whereby the entirety of the sapphire substrate 11 is dissolved in the flux mixture.
    Type: Application
    Filed: December 10, 2007
    Publication date: April 15, 2010
    Inventors: Shiro Yamazaki, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Publication number: 20100078606
    Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.
    Type: Application
    Filed: March 5, 2008
    Publication date: April 1, 2010
    Inventors: Osamu Yamada, Hisashi Minemoto, Kouichi Hiranaka, Takeshi Hatakeyama, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
  • Publication number: 20100059717
    Abstract: A method for producing a GaN crystal capable of achieving at least one of the prevention of nucleation and the growth of a high-quality non-polar surface is provided. The production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, including an adjustment step of adjusting the carbon content of the melt, and a reaction step of causing the gallium and nitrogen to react with each other. According to the production method of the present invention, nucleation can be prevented, and as shown in FIG. 4, a non-polar surface can be grown.
    Type: Application
    Filed: November 14, 2007
    Publication date: March 11, 2010
    Applicants: OSAKA UNIVERSITY, OSAKA INDUSTRIAL PROMOTION ORGANIZATION
    Inventors: Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Masashi Yoshimura, Minoru Kawahara, Yasuo Kitaoka, Masanori Morishita
  • Publication number: 20100012020
    Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.
    Type: Application
    Filed: September 9, 2009
    Publication date: January 21, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
  • Publication number: 20090293805
    Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 3, 2009
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 7580651
    Abstract: A method of controlling an energy saving mode in an image forming apparatus having hardware resources used in an image forming process and programs for performing the image forming process includes a step of letting the image forming apparatus enter into an energy saving mode in a standby state in which the image forming apparatus is not used, and a step of recovering at least part of functions of the image forming apparatus in response to setting of a data carrier in the image forming apparatus, said data carrier being in a possession of an operator.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 25, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Yoshiyuki Namizuka, Hiroshi Hosaka, Keiichiroh Katoh, Mitsuhisa Kanaya, Yuji Takahashi, Fumio Kawamura, Jun Doi, Masayoshi Miyamoto, Tetsuya Kawaguchi, Hiroshi Soga
  • Publication number: 20090205561
    Abstract: A production method is provided that enables to produce a large-sized bulk silicon carbide (SiC) crystal of high quality at low cost. A large-sized bulk silicon carbide (SiC) crystal of high quality can be obtained at a lower temperature by reacting silicon (Si) and carbon (C) produced from a lithium carbide such as dilithium acetylide (Li2C2) with each other in an alkali metal melt and thereby producing or growing a silicon carbide (SiC) crystal. FIG. 17 shows a high-resolution TEM (HR-TEM) image of the resultant 2H—SiC crystal. A preferable lithium carbide is dilithium acetylide (Li2C2). A preferable alkali metal melt is a melt of lithium alone.
    Type: Application
    Filed: June 26, 2007
    Publication date: August 20, 2009
    Applicant: Osaka University
    Inventors: Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Minoru Kawahara, Yasuo Kitaoka