Patents by Inventor Fumitaka Ishikawa

Fumitaka Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935784
    Abstract: A vertical layer stack including a bit-line-level dielectric layer and an etch stop dielectric layer can be formed over an array region. Bit-line trenches are formed through the vertical layer stack. Bit-line-trench fill structures are formed in the bit-line trenches. Each of the bit-line-trench fill structures includes a stack of a bit line and a capping dielectric strip. At least one via-level dielectric layer can be formed over the vertical layer stack. A bit-line-contact via cavity can be formed through the at least one via-level dielectric layer and one of the capping dielectric strips. A bit-line-contact via structure formed in the bit-line-contact via cavity includes a stepped bottom surface including a top surface of one of the bit lines, a sidewall segment of the etch stop dielectric layer, and a segment of a top surface of the etch stop dielectric layer.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 19, 2024
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Fumitaka Amano, Yusuke Osawa, Kensuke Ishikawa, Mitsuteru Mushiga, Motoki Kawasaki, Shinsuke Yada, Masato Miyamoto, Syo Fukata, Takashi Kashimura, Shigehiro Fujino
  • Patent number: 6179911
    Abstract: This invention provides a method and a apparatus capable of manufacturing single crystals with an oxygen density of less than 12×1017 atoms/cm3 or less than 10×1017 atoms/cm3, and wherein the oxygen density of the single crystal produced is uniformly distributed along its longitudinal axis. The electrical power inputted into the main heater 6 surrounding the quartz crucible 4 and the top heater 9 shaped like a reverse frustrated cone and disposed above the quartz crucible 4, is controlled to keep the temperature of the melt 5 in a preset range during the process of pulling up the single crystal silicon 10. When combining the main heater 6 and the top heater 9, the heat emitted from the main heater 6 can be kept small, and the heat load on the quartz crucible 4 and the amount of oxygen released from the quartz crucible 4 and dissloved into melt 5 can be reduced.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: January 30, 2001
    Assignee: Kamatsu Electronic Metals Co., Ltd.
    Inventors: Junsuke Tomioka, Hiroshi Inagaki, Fumitaka Ishikawa
  • Patent number: 6042646
    Abstract: A single crystal is pulled to a length at which the beginning of the body of the single crystal is assumed sufficiently to have been cooled down to a temperature below 1000.degree. C.; then the single crystal being pulled is detached from the molten silicon by pulling it at a speed high enough to cut it out from the molten silicon. Then oxygen precipitation heat-treatment is performed on the single crystal to locate the portion of AOP. AOP arises at the boundary of grown-in defects being formed zone while the single crystal passes through 1100.degree. C., and the position is at about 1100.degree. C. immediately before, detaching the single crystal out from the molten silicon. Therefore, the position at temperature 1100.degree. C. in the single crystal immediately before detaching the single crystal out from the molten silicon are known, then the temperature distributions of the single crystal immediately before detaching it out from the molten silicon can be decided easily.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: March 28, 2000
    Assignee: Komatsu Electric Metals Co., Ltd.
    Inventors: Fumitaka Ishikawa, Toshiaki Saishoji, Kozo Nakamura
  • Patent number: 6007625
    Abstract: This invention provides a method and a apparatus capable of manufacturing single crystals with an oxygen density of less than 12.times.10.sup.17 atoms/cm.sup.3 or less than 10.times.10.sup.17 atoms/cm.sup.3, and wherein the oxygen density of the single crystal produced is uniformly distributed along its longitudinal axis. The electrical power inputted into the main heater 6 surrounding the quartz crucible 4 and the top heater 9 shaped like a reverse frustrated cone and disposed above the quartz crucible 4, is controlled to keep the temperature of the melt 5 in a preset range during the process of pulling up the single crystal silicon 10. When combining the main heater 6 and the top heater 9, the heat emitted from the main heater 6 can be kept small, and the heat load on the quartz crucible 4 and the amount of oxygen released from the quartz crucible 4 and dissloved into melt 5 can be reduced.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: December 28, 1999
    Assignee: Komatsu Electronic Metals Co., Ltd.
    Inventors: Junsuke Tomioka, Hiroshi Inagaki, Fumitaka Ishikawa
  • Patent number: 5951759
    Abstract: This invention provides a apparatus and a method of pulling up single crystals, which respond to the weight increase of semiconductor single crystal produced by the CZ method. The retaining wire wind-up mechanisms 11, 12; multiple pairs of guide pipes 4a, 4c capable of being moved upward or downward with respect to the seed holder 1; and a plurality of retaining wires 13, 15, each retaining wire passing through one pair of the guide pipes and having its central portion to be bent into a "U" shape are provided in the central portion of the lifting wire 5. The single crystal 17 can be retained by the retaining wire 13, 15, if the guide pipes 4a, 4c are driven to move downward and the "U" shaped portions of the retaining wires 13, 15 are driven to engage with the necked portion 17b so as to lift single crystal 17. The load is determined based on the detected value coming from the weight sensors installed on the means for winding up the retaining wires.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: September 14, 1999
    Assignee: Komatsu Electronic Metals Co., Ltd.
    Inventors: Hiroshi Inagaki, Fumitaka Ishikawa