Patents by Inventor G. K. Ananthasuresh

G. K. Ananthasuresh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8118866
    Abstract: A percutaneously inserted bistable heart valve prosthesis is folded inside a catheter for transseptal delivery to the patient's heart for implantation. The heart valve has an annular ring, a body member having a plurality of legs, each leg connecting at one end to the annular ring, claws that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into the claws in the second position, and leaflet membranes connected to the annular ring, the body member and/or the legs, the leaflet membranes having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough. The heart valve is designed such that upon removal of the external force the claws elastically revert to the first position so as to grip the heart tissue positioned within the claws, thereby holding the heart valve in place. The body member and claws may be integrated into a one-piece design.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: February 21, 2012
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Howard C. Herrmann, Nilesh Mankame, Suresh G. K. Ananthasuresh
  • Publication number: 20100042208
    Abstract: A percutaneously inserted bistable heart valve prosthesis is folded inside a catheter for transseptal delivery to the patient's heart for implantation. The heart valve has an annular ring, a body member having a plurality of legs, each leg connecting at one end to the annular ring, claws that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into the claws in the second position, and leaflet membranes connected to the annular ring, the body member and/or the legs, the leaflet membranes having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough. The heart valve is designed such that upon removal of the external force the claws elastically revert to the first position so as to grip the heart tissue positioned within the claws, thereby holding the heart valve in place. The body member and claws may be integrated into a one-piece design.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Howard C. Herrmann, Nilesh Mankame, Suresh G. K. Ananthasuresh
  • Patent number: 7621948
    Abstract: A percutaneously inserted bistable heart valve prosthesis is folded inside a catheter for transseptal delivery to the patient's heart for implantation. The heart valve has an annular ring, a body member having a plurality of legs, each leg connecting at one end to the annular ring, claws that are adjustable from a first position to a second position by application of external force so as to allow ingress of surrounding heart tissue into the claws in the second position, and leaflet membranes connected to the annular ring, the body member and/or the legs, the leaflet membranes having a first position for blocking blood flow therethrough and a second position for allowing blood flow therethrough. The heart valve is designed such that upon removal of the external force the claws elastically revert to the first position so as to grip the heart tissue positioned within the claws, thereby holding the heart valve in place. The body member and claws may be integrated into a one-piece design.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: November 24, 2009
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Howard C Herrmann, Nilesh Mankame, Suresh G. K. Ananthasuresh
  • Publication number: 20070188846
    Abstract: A MEMS switch of the type having a substrate and a bistable element, uses a structure for the bistable element having first and second substantially straight beam members that are bridged by an optional switch contact member. The switch contact member may be actuated to close a pair of fixed electrical contacts by an actuator means. The actuator means as described comprises electro-thermally compliant actuators. However, other types of actuators including thermo-pneumatic, thermal bimorphic, piezoelectric, electrostatic, fluidic, electromagnetic and phase change actuators may be used. The bistable element is structured to be moved between a first stable state and a second stable state by the selective urging action of two opposing actuators. The actuators, if the electo-thermal compliant type, may comprise first and second bound and spaced electrically conductive beams connected in parallel and supplied with an electrical current.
    Type: Application
    Filed: August 20, 2004
    Publication date: August 16, 2007
    Inventors: James Slicker, Ananthakrishnan Surianarayanan, G K Ananthasuresh
  • Patent number: 6392313
    Abstract: The invention overcomes limitations of conventional power and thermodynamic sources by with micromachinery components that enable production of significant power and efficient operation of thermodynamic systems in the millimeter and micron regime to meet the efficiency, mobility, modularity, weight, and cost requirements of many modern applications. A micromachine of the invention has a rotor disk journalled for rotation in a stationary structure by a journal bearing. A plurality of radial flow rotor blades, substantially untapered in height, are disposed on a first rotor disk face, and an electrically conducting region is disposed on a rotor disk face. A plurality of stator electrodes that are electrically interconnected to define multiple electrical stator phases are disposed on a wall of the stationary structure located opposite the electrically conducting region of the rotor disk.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: May 21, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Alan H. Epstein, Stephen D. Senturia, Ian A. Waitz, Jeffrey H. Lang, Stuart A. Jacobson, Fredric F. Ehrich, Martin A. Schmidt, G. K. Ananthasuresh, Mark S. Spearing, Kenneth S. Breuer, Steven F. Nagle
  • Patent number: 5932940
    Abstract: The invention provides a micro-gas turbine engine and associated microcomponentry. The engine components, including, e.g., a compressor, a diffuser having diffuser vanes, a combustion chamber, turbine guide vanes, and a turbine are each manufactured by, e.g., microfabrication techniques, of a structural material common to all of the elements, e.g., a microelectronic material such as silicon or silicon carbide. Vapor deposition techniques, as well as bulk wafer etching techniques, can be employed to produce the engine. The engine includes a rotor having a shaft with a substantially untapered compressor disk on a first end, defining a centrifugal compressor, and a substantially untapered turbine disk on the opposite end, defining a radial inflow turbine. The rotor is preferably formed of a material characterized by a strength-to-density ratio that enables a rotor speed of at least about 500,000 rotations per minute.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: August 3, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Alan H. Epstein, Stephen D. Senturia, Ian A. Waitz, Jeffrey H. Lang, Stuart A. Jacobson, Fredric F. Ehrich, Martin A. Schmidt, G. K. Ananthasuresh, Mark S. Spearing, Kenneth S. Breuer, Steven F. Nagle