Patents by Inventor G. Neil Holland

G. Neil Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5209233
    Abstract: A cardiac electrode (40) has a plug (48) which is frictionally received in a socket (50) of an electrical lead (56). An impedance (54) is connected in series between the electrical lead and the socket to pass ECG signals substantially unattenuated and for blocking radio frequency signals induced in the lead from reaching the socket and the electrode and heating the electrode to a sufficient temperature to burn the patient. The impedance includes an LC circuit (66, 68) which freely passes low frequency signals, such as cardiac signals, but which is tuned to resonance at radio frequencies, particularly at the frequency of resonance excitation and manipulation pulses of a magnetic resonance imager (A). Alternately, the impedance may include a resistive element for blocking the induced currents. A temperature sensor (60) is mounted in intimate contact with an electrically and thermally conductive socket portion (52) to sense the temperature of the electrode, indirectly.
    Type: Grant
    Filed: February 11, 1991
    Date of Patent: May 11, 1993
    Assignee: Picker International, Inc.
    Inventors: G. Neil Holland, Douglas M. Blakeley, Theodore J. Reisker, David A. Molyneaux
  • Patent number: 5170123
    Abstract: A magnetic resonance imaging apparatus includes one or more digital transmitters (B), one or more digital receivers (C), and digital data processing circuitry (D) which are all clocked and controlled by a single clock (F). Each digital transmitter includes a numerically controlled modulated oscillator (20) which processes digital phase and frequency signals to produce an output which addresses a wave-form map stored in a PROM (22). Each wave-form output of the PROM is multiplied (24) by a digital amplitude profile signal to generate a phase, frequency, and amplitude modulated digital RF signals. A clock gate (30) controls clocking of the digital modulation to create RF pulses. A digital-to-analog converter (28) converts the digital information to an analog RF pulse which is applied to a subject in an image region. The receivers each include an analog-to-digital converter (60) which digitizes the magnetic resonance signal emanating from the subject in the image region with four fold oversampling.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: December 8, 1992
    Assignee: Picker International, Inc.
    Inventors: G. Neil Holland, Douglas M. Blakeley, John R. Stauber, David C. Flugan, Kenneth S. Denison
  • Patent number: 5124649
    Abstract: A gradient magnetic field control (20) and a transmitter (30) are operated under the control of a timing and control computer (40) to generate magnetic resonance excitation pulse sequences. Each sequence provides phase encoding with one of a plurality of phase angles to the resultant resonance signals. A receiver (34) receives the phase encoded magnetic resonance signals which are digitized by an analog to digital converter (50) to form a plurality of views which are stored in a view memory (52). A larger plurality of views are generated adjacent a central or zero phase angle, e.g. views -63 to +64 of FIG. 2, and only one or a smaller plurality of views are generated adjacent peripheral phase angles, e.g. views -127 to -64 and +65 to +128 of FIG. 2. The slower, low frequency motion artifacts, such as respiratory motion artifacts, manifest themselves in the low frequency phase encoded views adjacent the zero phase encode angle.
    Type: Grant
    Filed: June 2, 1987
    Date of Patent: June 23, 1992
    Assignee: Picker International, Inc.
    Inventors: Kenneth S. Denison, G. Neil Holland
  • Patent number: 5007425
    Abstract: A support stand (B) adjustably supports either (i) a localized coil assembly or (ii) a portion of a patient within an image region of a magnetic resonance imager (A). A vertical member (42) extends upward from a base (40). A follower (44) is selectively positionable along the vertical member. In one embodiment, a universal joint (48) adjustably mounts a bracket (50) to the follower (FIG. 2). In another embodiment, the follower includes an arm (70) which receives a mounting pin (72) of the supported device. The supported device may be a surface coil (22) or an orthopedic appliance such as a knee support (80) or limb support (90). Every part of the support stand and the supported orthopedic structure, including screws and fasteners are constructed of a material which is invisible in the magnetic resonance images generated by the imager and which is a dielectric to avoid patient shock from induced currents.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: April 16, 1991
    Assignee: Picker International, Inc.
    Inventors: Denis W. Vanek, G. Neil Holland
  • Patent number: 4920318
    Abstract: A resonance exciting coil (C) excites magnetic resonance in nuclei disposed in an image region in which a main magnetic field and transverse gradients have been produced. A flexible receiving coil (D) includes a flexible plastic sheet (40) on which one or more loops (20) are adhered to receive signals from the resonating nuclei. Velcro straps (46) strap the flexible sheet and the attached coil into close conformity with the surface of the portion of the patient to be imaged. An impedance matching or coil resonant frequency adjusting network (50) is mounted on the flexible sheet for selectively adjusting at least one of an impedance match and the peak sensitivity resonant frequency of the receiving coil. A preamplifier (52) amplifies the received signals prior to transmission on a cable (24). A selectively variable voltage source (70) applies a selectively adjustable DC bias voltage to the cable for selectively adjusting at least one of the impedance match and the LC resonant frequency of the receiving coil.
    Type: Grant
    Filed: October 3, 1988
    Date of Patent: April 24, 1990
    Assignee: Picker International, Inc.
    Inventors: George J. Misic, Gregory C. Hurst, G. Neil Holland, John L. Patrick, III, Paul T. Orlando
  • Patent number: 4918388
    Abstract: A thin dielectric sheet (36) has a first or loop coil (30) defined on one surface thereof and a second or Helmholtz coil (32) defined on an obverse surface thereof. The dielectric sheet and associated coils may be laid flat (FIG. 3) or bent to match a selected curved surface of the subject (FIGS. 6-8). The first and second coils are arranged symmetrically about an axis or plane of symmetry (34). The first coil has an associated magnetic field along a y-axis and the second coil has an associated magnetic field along the x-axis. Circuits (40 and (42) tune the first and second magnetic resonance coils to a preselected magnetic resonance frequency. Magnetic resonance signals of the selected frequency received by one of the coils are phase shifted 90.degree. by a phase shifting circuit (50) and combined with the unphase shifted signals from the other coil by a combining circuit (52). The combined signals are amplified (54) and conveyed to electronic image processing circuitry (E) of a magnetic resonance scanner.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: April 17, 1990
    Assignee: Picker International, Inc.
    Inventors: Mehrdad Mehdizadeh, David A. Molyneaux, G. Neil Holland
  • Patent number: 4912413
    Abstract: An incomplete set of magnetic resonance image data is collected and stored in a view memory (40). The incomplete set of image data includes a central or first set of data values (42, 42') and half of the remaining data values (44, 44'). A symmetric data set which fills the other remaining half (46, 46') of the data values is generated (90) by determining the complex conjugate of each value of the incomplete data set. The incomplete and symmetric data sets are Fourier transformed (64, 94) to create first and second images f.sub.1 (x,y) and f.sub.2 (x,y). The first and second images are multiplied (100, 104) by conjugately symmetric phase correction values e.sup.i.phi.(x,y) and e.sup.-i.phi.(x,y) from a phase correction memory (70) to produce phase corrected images. The first and second phase corrected image representations are summed (110) and displayed (114). The phase correction values .phi.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: March 27, 1990
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, John L. Patrick, G. Neil Holland
  • Patent number: 4881033
    Abstract: A multi-echo magnetic resonance imaging sequence is implemented such that a radio frequency receiver (34) receives magnetic resonance signals during each of a plurality of magnetic resonance echoes. The resonance data received during each echo are digitized and the resultant echo data are stored in a corresponding echo memory (40, 42). The locations of the data within the memories are brought into registration (52) such that corresponding data in each memory is disposed at the same memory address. Because data from later echoes tends to be weaker or at a lower magnitude, the magnitude of the data stored in each memory is normalized (60). The phase of the data in each memory is brought into coordination by a zero order phase correction (70). A high pass filter (84) and a complementary low pass filter (86) separate complementary portions of the data from the memories. The separated portions are combined into a single synthesizied data set for storage in memory (82).
    Type: Grant
    Filed: April 3, 1989
    Date of Patent: November 14, 1989
    Assignee: Picker International, Inc.
    Inventors: Kenneth S. Denison, G. Neil Holland, Gordon D. DeMeester
  • Patent number: 4851779
    Abstract: An incomplete set of three dimensional magnetic resonance data is collected and stored in acquired data memory (40). The incomplete data set is complete with respect to first and second directions and incomplete with respect to a third direction. However, the acquired data set has data along the third direction between .+-.n central values and half the remaining values. One dimensional inverse Fourier transforms (64, 66) are performed with respect to the first and second directions to create an intermediate data set (68). A phase correction array or plurality of phase correction vectors p(r) are generated from the intermediate data and stored in a phase correction memory (82). A symmetric data set (100) is created as the complex conjugate of the intermediate data set. The intermediate and symmetric data sets are one dimensionally inverse Fourier transformed (96, 104) with respect to the third direction one vector at a time to produce vectors of first and second complex image arrays (f.sub.A, f.sub.
    Type: Grant
    Filed: February 18, 1988
    Date of Patent: July 25, 1989
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, G. Neil Holland, Francis H. Bearden
  • Patent number: 4839594
    Abstract: Magnet (12) creates a main magnetic field along a z-axis through an image region. A localized coil (D) is disposed in the image region at least to receive magnetic resonance signals from nuclei of the subject which have been induced to resonance. The localized coil includes an inner conductor (30), an outer conductor (32), and a dielectric material (52) therebetween. The outer conductor defines a gap (50) midway between its ends. One end of the inner conductor is connected with a gate of an FET transistor (66) and the outer conductor is connected with its source. The transistor source and drain are connected by a coaxial transmission cable (38) with a DC power supply (70) which provides a DC bias across the transistor source and drain. The cable also connects the transistor with a radio frequency receiver (40) to convey preamplified magnetic resonance signals thereto.
    Type: Grant
    Filed: November 13, 1987
    Date of Patent: June 13, 1989
    Assignee: Picker International, Inc.
    Inventors: George J. Misic, G. Neil Holland, Mehrdad Mehdizadeh, John L. Patrick
  • Patent number: 4833407
    Abstract: A spin echo (52) and a gradient echo (60) are generated in each magnetic resonance sequence repetition. The spin echo is phase encoded by a phase encode gradient (44) in regular steps spanning about a quarter of k-space. More particularly, steps from -n to G.sub.max /2, where n is a small integer and G.sub.max is the maximum phase encode gradient. An off-set phase encode gradient (58) shifts the phase encoding of the gradient echo by G.sub.max /2 relative to the first phase encoding gradient. Data to fill the empty portions of k-space (142, 167) between -n and -G.sub.max are generated from the complex conjugate (140, 160), of the first echo data (74) and the second echo data (76). The first and second echo data and the complex conjugate data are transformed (122, 132, 146, 166) to generate parted image representations (124, 134, 148, 168).
    Type: Grant
    Filed: November 23, 1987
    Date of Patent: May 23, 1989
    Assignee: Picker International, Inc.
    Inventors: G. Neil Holland, Terrence J. Provost, Gordon D. DeMeester, Kenneth S. Denison
  • Patent number: 4797617
    Abstract: A nuclear magnetic resonance radio frequency coil. The disclosed coil provides high frequency resonance signals for perturbing a magnetic field within the coil. The coil is impedance matched and tuned with adjustable capacitors. A balanced configuration is achieved with a co-axial cable chosen to phase shift an energization signal coupled to the coil. The preferred coil is a thin metallic foil having a shorting conductor, four wing conductors, and uniquely shaped parallel cross conductors connecting the shorting and wing conductors. When mounted to an rf transmissive plastic substrate and energized the coil produces a homogenous field within a region of interest the size of a patient head. A semicircular balanced feedbar arrangement is used to minimize undesired field contributions.
    Type: Grant
    Filed: November 21, 1986
    Date of Patent: January 10, 1989
    Assignee: Picker International, Inc.
    Inventors: George J. Misic, Aarne Lillo, John L. Patrick, G. Neil Holland
  • Patent number: 4793356
    Abstract: A resonance exciting coil (C) excites magnetic resonance in nuclei disposed in an image region in which a main magnetic field and transverse gradients have been produced. A flexible receiving coil (D) includes a flexible plastic sheet (40) on which one or more loops (20) are adhered to receive signals from the resonating nuclei. Velcro straps (46) strap the flexible sheet and the attached coil into close conformity with the surface of the portion of the patient to be imaged. An impedance matching or coil resonant frequency adjusting network (50) is mounted on the flexible sheet for selectively adjusting at least one of an impedance match and the peak sensitivity resonant frequency of the receiving coil. A preamplifier (52) amplifies the received signals prior to transmission on a cable (24). A selectively variable voltage source (70) applies a selectively adjustable DC bias voltage to the cable for selectively adjusting at least one of the impedance match and the LC resonant frequency of the receiving coil.
    Type: Grant
    Filed: August 14, 1985
    Date of Patent: December 27, 1988
    Assignee: Picker International, Inc.
    Inventors: George J. Misic, Gregory C. Hurst, G. Neil Holland, John L. Patrick, III, Paul T. Orlando
  • Patent number: 4780675
    Abstract: An incomplete set of magnetic resonance image data is collected and stored in a view memory (40). The incomplete set of image data includes a central or first set of data values (42, 42') and a side or second set of data values (44, 44'). The central data set is operated on by a roll-off filter (64) and a Fourier transform (66) to create a normalized phase map (72). The first and second data sets are Fourier transformed (82) and phase corrected (86) by being multiplied with a complex conjugate (88) of the corresponding phase map data value. A third data set (46, 46') is generated (90) by determining the complex conjugate of the second or side data set. The third data set is Fourier transformed (94) and multiplied (98) by a corresponding value from the phase map to produce a second phase corrected image representation. The first and second phase corrected image representations are summed (100) and stored in a resultant image memory (102).
    Type: Grant
    Filed: August 14, 1987
    Date of Patent: October 25, 1988
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, John L. Patrick, G. Neil Holland
  • Patent number: 4777438
    Abstract: Gradients are caused across a magnetic field in an image region by gradient field coils (22). A transmitter (30) causes an RF antenna (32) to generate excitation pulses to excite selected dipoles from the image region to resonance. A first receiving coil (50) and a second receiving coil (52) are disposed along the gradient to receive magnetic resonance signals from first and second fields of view (102, 104) within the image region. First and second phase sensitive detectors (70, 72) demodulate the magnetic resonance signals at different frequencies. Analog-to-digital converters (80, 82, 84, 86) digitize magnetic resonance signal components from the phase sensitive detectors to provide digital data for reconstruction by Fourier transform circuits (90, 92).
    Type: Grant
    Filed: April 27, 1987
    Date of Patent: October 11, 1988
    Assignee: Picker International, Inc.
    Inventor: G. Neil Holland
  • Patent number: 4761612
    Abstract: In a magnetic resonance imaging apparatus, a gradient profile generator (30) generates gradient energization profiles or current pulses (32, 34, 36) each of which has a shape that corresponds to a profile of a preselected magnetic field gradient that is to be applied across an image region (10) by gradient coils (38). The applied gradient magnetic field profile inherently causes eddy currents which generate opposing magnetic field components and distort the gradient magnetic field profile. A series of calibration circuits (62) alters the gradient energization profiles to compensate for eddy current distortion. A profile amplifier (74) is connected with a first MDAC (80) in parallel with a capacitor (82) and a second MDAC (84) in a feedback loop. By digitally controlling the internal resistance of the MDACs, the magnitude of a feedback signal and its RC time constant are digitally adjusted. A magnetic field sensor (90) measures the resultant gradient magnetic field profile.
    Type: Grant
    Filed: April 3, 1987
    Date of Patent: August 2, 1988
    Assignee: Picker International, Inc.
    Inventors: G. Neil Holland, John R. Stauber
  • Patent number: 4748411
    Abstract: Each view of a magnetic resonance image is phase encoded with one of a plurality of phase encode gradients which vary from each other by a multiple of a phase encode gradient interval or step. For a given field of view, the resolution is determined by the upper and lower limit phase encode gradient angles. The larger the limit angle, the finer the resolution. When the imaged subject is shorter in dimension along the phase encode axis than the dimension of the field of view of the image along the phase encode axis, a portion of dead space other than the subject is imaged. To shorten the imaging time, the number of views is reduced in accordance with the ratio of the object dimension to the field of view. The size of the phase encode gradient steps or intervals are increased by the same ratio such that a reduced number of views spans the same upper and lower phase encode gradient angle limits. This stretches the resultant image.
    Type: Grant
    Filed: February 19, 1987
    Date of Patent: May 31, 1988
    Assignee: Picker International, Inc.
    Inventor: G. Neil Holland
  • Patent number: 4703275
    Abstract: An electronic module for generating gradient energization signals in magnetic resonance imaging to correct for eddy current effects. An energization profile is modified by an amount related to the magnitude of eddy current fields generated in the vicinity of a gradient coil. This modification produces an energization profile resulting in a gradient magnetic field corresponding to the magnetic field the unmodified energization profile would have produced but for the presence of induced eddy currents.
    Type: Grant
    Filed: July 25, 1985
    Date of Patent: October 27, 1987
    Assignee: Picker International, Inc.
    Inventor: G. Neil Holland
  • Patent number: 4634980
    Abstract: A nuclear magnetic resonance radio frequency coil. The disclosed coil provides high frequency resonance signals for perturbing a magnetic field within the coil. The coil is impedance matched and tuned with adjustable capacitors. A balanced configuration is achieved with a co-axial cable chosen to phase shift an energization signal coupled to the coil. The preferred coil is a thin metallic foil having a shorting conductor, four wing conductors, and uniquely shaped parallel cross conductors connecting the shorting and wing conductors. When mounted to a rf transmissive plastic substrate and energized the coil produces a homogeneous field within a region of interest the size of a patient head. A semicircular balanced feedbar arrangement is used to minimize undesired field contributions.
    Type: Grant
    Filed: August 16, 1984
    Date of Patent: January 6, 1987
    Assignee: Picker International, Inc.
    Inventors: George J. Misic, Aarne Lillo, John L. Patrick, G. Neil Holland