Patents by Inventor G. Nicholson

G. Nicholson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240156919
    Abstract: The invention relates to the field of molecular biology and recombinant nucleic acid technology. In particular, the invention relates to a method of treating a patient with Duchenne Muscular Dystrophy comprising the removal of at least one exon from the dystrophin gene using engineered nucleases.
    Type: Application
    Filed: October 19, 2023
    Publication date: May 16, 2024
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20240052373
    Abstract: Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human beta-2 microglobulin gene. The disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells, and to a population of genetically-modified T cells having reduced cell-surface expression of beta-2 microglobulin.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 15, 2024
    Applicant: Precision Biosciences, Inc.
    Inventors: Victor Bartsevich, Christina Pham, Aaron Martin, Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20240002796
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 17, 2023
    Publication date: January 4, 2024
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Publication number: 20230193318
    Abstract: Disclosed herein are viral vectors for use in recombinant molecular biology techniques. In particular, the present disclosure relates to self-limiting viral vectors comprising genes encoding site-specific endonucleases as well as recognition sequences for site-specific endonucleases such that expression of the endonuclease in a cell cleaves the viral vector and limits its persistence time. In some embodiments, the viral vectors disclosed herein also carry directives to delete, insert, or change a target sequence.
    Type: Application
    Filed: November 22, 2022
    Publication date: June 22, 2023
    Applicant: Precision BioSciencens, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20230193230
    Abstract: Disclosed are recombinant meganucleases engineered to bind and cleave a recognition sequence present in a mutant RHO P23H allele. The invention further relates to the use of such recombinant meganucleases in a method for treating retinitis pigmentosa, wherein the mutant RHO P23H allele is preferentially targeted, cleaved, and inactivated.
    Type: Application
    Filed: May 11, 2021
    Publication date: June 22, 2023
    Applicant: Precision BioSciences, Inc.
    Inventors: Victor Bartsevich, Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20220333137
    Abstract: Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.
    Type: Application
    Filed: January 27, 2022
    Publication date: October 20, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20220245632
    Abstract: A method for providing user feedback and recommendations regarding the likelihood that a fund transfer transaction will be completed can include receiving a first message and a second message, from an external device, that includes first transaction data and second transaction data for a proposed transaction. The method can further include generating a first assessment and a second assessment, responsive to receiving the first message and the second message and based at least in part on the first transaction data and the second transaction data, of the likelihood that the transaction will be successful if initiated. The method can further include providing user feedback to the external device to indicate the likelihood. Other systems, apparatuses, and methods are also described.
    Type: Application
    Filed: November 25, 2020
    Publication date: August 4, 2022
    Inventors: Stephen G. Nicholson, Alma D. Jensen, Linda Huang, Peter S. Kim
  • Publication number: 20220193267
    Abstract: The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within the int22h-1 sequence of a Factor VIII gene. The present invention also encompasses methods of using such engineered nucleases to make genetically-modified cells, and the use of such cells in a pharmaceutical composition and in methods for treating hemophilia A. Further, the invention encompasses pharmaceutical compositions comprising engineered nuclease proteins, nucleic acids encoding engineered nucleases, or genetically-modified cells of the invention, and the use of such compositions for treating of hemophilia A.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Victor Bartsevich, Clayton Beard, Michael G. Nicholson
  • Publication number: 20220152112
    Abstract: Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human T cell receptor alpha constant region gene. The present disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Michael G. Nicholson, James Jefferson Smith, Derek Jantz, Victor Bartsevich, Daniel T. MacLeod, Jeyaraj Antony
  • Publication number: 20220143155
    Abstract: Disclosed are recombinant meganucleases engineered to recognize and cleave recognition sequences present in a mutant RHO P23H allele. The invention further relates to the use of such recombinant meganucleases in methods for treating retinitis pigmentosa, wherein the mutant RHO P23H allele is preferentially targeted, cleaved, and inactivated.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Victor Bartsevich, Derek Jantz, James Jefferson Smith, Michael G. Nicholson
  • Publication number: 20220145251
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 12, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyara Antony, Victor Bartsevich
  • Publication number: 20220135945
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 11288727
    Abstract: Content creation suggestion techniques are described. In one or more implementations, techniques are implemented to generate suggestions that are usable to guide creative professionals in the creation of content such as images, video, sound, multimedia, and so forth. A variety of techniques are usable to generate suggestions for the content professionals. In a first such example, suggestions are based on shared characteristics of images obtained by users of a content sharing service, e.g., licensed by the users. In another example, suggestions are generated by the content sharing service based on keywords used to locate the images. In a further example, suggestions are generated based on data described communications performed using social network services. In yet another example, recognition of failure of search is used to generate suggestions. A variety of other examples are also contemplated and described herein.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: March 29, 2022
    Assignee: Adobe Inc.
    Inventors: Zeke Koch, Baldo Antonio Faieta, Jen-Chan Chien, Mark M. Randall, Olivier Sirven, Philipp Koch, Dennis G. Nicholson
  • Patent number: 11278632
    Abstract: The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within the int22h-1 sequence of a Factor VIII gene. The present invention also encompasses methods of using such engineered nucleases to make genetically-modified cells, and the use of such cells in a pharmaceutical composition and in methods for treating hemophilia A. Further, the invention encompasses pharmaceutical compositions comprising engineered nuclease proteins, nucleic acids encoding engineered nucleases, or genetically-modified cells of the invention, and the use of such compositions for treating of hemophilia A.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: March 22, 2022
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Victor Bartsevich, Clayton Beard, Michael G. Nicholson
  • Patent number: 11266693
    Abstract: Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human T cell receptor alpha constant region gene. The present disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 8, 2022
    Assignee: Precision BioSciences, Inc.
    Inventors: Michael G. Nicholson, James Jefferson Smith, Derek Jantz, Victor Bartsevich, Daniel T. MacLeod, Jeyaraj Antony
  • Patent number: 11268065
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: March 8, 2022
    Assignee: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Publication number: 20210332338
    Abstract: Targeted transcriptional effectors (transcription activators and transcription repressors) derived from meganucleases are described. Also described are nucleic acids encoding same, and methods of using same to regulate gene expression. The targeted transcriptional effectors can comprise (i) a meganuclease DNA-binding domain lacking endonuclease cleavage activity that binds to a target recognition site; and (ii) a transcription effector domain.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 28, 2021
    Applicant: Duke University
    Inventors: Derek Jantz, Michael G. Nicholson, James Jefferson Smith
  • Publication number: 20210207093
    Abstract: Disclosed herein is a genetically-modified cell comprising in its genome a modified human T cell receptor alpha constant region gene, wherein the cell has reduced cell-surface expression of the endogenous T cell receptor. The present disclosure further relates to methods for producing such a genetically-modified cell, and to methods of using such a cell for treating a disease in a subject.
    Type: Application
    Filed: March 1, 2021
    Publication date: July 8, 2021
    Applicant: Precision BioSciences, Inc.
    Inventors: Derek Jantz, James Jefferson Smith, Michael G. Nicholson, Daniel T. MacLeod, Jeyaraj Antony, Victor Bartsevich
  • Patent number: 11048779
    Abstract: Content creation and licensing control techniques are described. In a first example, a content creation service is configured to support content creation using an image along with functionality to locate the image or a similar image that is available for licensing. In another example, previews of images are used to generate different versions of content along with an option to license images previewed in an approved version of the content. In a further example, fingerprints are used to locate images used as part of content creation by a content creation service without leaving a context of the service. In yet another example, location of licensable versions of images is based at least in part on identification of a watermark included as part of an image. In an additional example, an image itself is used as a basis to locate other images available for licensing by a content sharing service.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 29, 2021
    Assignee: Adobe Inc.
    Inventors: Zeke Koch, Baldo Faieta, Jen-Chan Chien, Mark M. Randall, Olivier Sirven, Philipp Koch, Dennis G. Nicholson
  • Patent number: D1028250
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: May 21, 2024
    Assignee: Auris Health, Inc.
    Inventors: Thomas G. T. Brisebras, Juan B. Bajana Merizalde, Fabien Y. Schmitt, Christian de Jesus Ruiz, Andrew Martin Torrance, Travis C. Covington, Taylor R. Nicholson, Colin Allen Wilson