Patents by Inventor Günther Roelkens

Günther Roelkens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896373
    Abstract: A spectroscopic laser sensor based on hybrid lll-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a lll-V gain-chip, e.g., an AIGalnAsSb/GaSb based gain-chip, and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AIGal-nAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 13, 2024
    Assignee: Brolis Sensor Technology, UAB
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva Simonyte, Günther Roelkens
  • Patent number: 11696707
    Abstract: A spectroscopic laser sensor based on hybrid III-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a III-V gain-chip, e.g., an AlGaInAsSb/GaSb based gain-chip, and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AlGa1-nAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: July 11, 2023
    Assignee: Brolis Sensor Technology, UAB et al.
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva Simonyte, Günther Roelkens
  • Publication number: 20230047997
    Abstract: A spectroscopic laser sensor based on hybrid lll-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a lll-V gain-chip, e.g., an AIGalnAsSb/GaSb based gain-chip, and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AIGalnAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 16, 2023
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva Simonyte, Günther Roelkens
  • Publication number: 20230036048
    Abstract: A spectroscopic laser sensor based on hybrid III-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a III-V gain-chip, e.g., an AIGalnAsSb/GaSb based gain-chip, and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AIGal-nAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 2, 2023
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva Simonyte, Günther Roelkens
  • Patent number: 11298057
    Abstract: A spectroscopic laser sensor based on hybrid III-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a III-V gain-chip, e.g., an AlGaInAsSb/GaSb based gain-chip and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AlGaInAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: April 12, 2022
    Assignees: Brolis Sensor Technology, UAB, Universiteit Gent, IMEC VZW
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva {hacek over (S)}imonytė, Günther Roelkens
  • Publication number: 20210353183
    Abstract: A spectroscopic laser sensor based on hybrid III-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a III-V gain-chip, e.g., an AlGaInAsSb/GaSb based gain-chip and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AlGaInAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Application
    Filed: July 7, 2021
    Publication date: November 18, 2021
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, Ieva Simonyte, Günther Roelkens
  • Publication number: 20200069225
    Abstract: A spectroscopic laser sensor based on hybrid lll-V/IV system-on-a-chip technology. The laser sensor is configured to either (i) be used with a fiber-optic probe connected to an intravenous/intra-arterial optical catheter for direct invasive blood analyte concentration level measurement or (ii) be used to measure blood analyte concentration level non-invasively through an optical interface attached, e.g., to the skin or fingernail bed of a human. The sensor includes a lll-V gain-chip, e.g., an AIGalnAsSb/GaSb based gain-chip, and a photonic integrated circuit, with laser wavelength filtering, laser wavelength tuning, laser wavelength monitoring, laser signal monitoring and signal output sections realized on a chip by combining IV-based semiconductor substrates and flip-chip AIGal-nAsSb/GaSb based photodetectors and embedded electronics for signal processing.
    Type: Application
    Filed: May 21, 2018
    Publication date: March 5, 2020
    Inventors: Augustinas Vizbaras, Kristijonas Vizbaras, leva Simonyte, Günther Roelkens
  • Patent number: 10338313
    Abstract: An on-chip broadband radiation source, and methods for its manufacture such that a photonics IC comprises an optical waveguide such as a semiconductor waveguide, a thin III-V material membrane with absorption capability for absorbing an optical pump signal induced in the waveguide. The III-V membrane comprises a LED implemented therein. The photonics IC also comprises a coupling means between the waveguide and the membrane. The device provides a broadband radiation source at a wavelength longer than the wavelength of the transferred radiation. The broadband signal can then be coupled out through the waveguide and used in the chip.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 2, 2019
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Roeland Baets, Günther Roelkens, Andreas De Groote, Paolo Cardile, Ananth Subramanian
  • Publication number: 20180239089
    Abstract: An on-chip broadband radiation source, and methods for its manufacture such that a photonics IC comprises an optical waveguide such as a semiconductor waveguide, a thin III-V material membrane with absorption capability for absorbing an optical pump signal induced in the waveguide. The III-V membrane comprises a LED implemented therein. The photonics IC also comprises a coupling means between the waveguide and the membrane. The device provides a broadband radiation source at a wavelength longer than the wavelength of the transferred radiation. The broadband signal can then be coupled out through the waveguide and used in the chip.
    Type: Application
    Filed: August 22, 2016
    Publication date: August 23, 2018
    Inventors: Roeland BAETS, Günther ROELKENS, Andreas DE GROOTE, Paolo CARDILE, Ananth SUBRAMANIAN
  • Patent number: 10036625
    Abstract: An integrated waveguide based spectrometer is described. The spectrometer comprises a sensing region for receiving multi-wavelength radiation for irradiating a sample in the sensing region, a wavelength demultiplexing element arranged for capturing said multi-wavelength radiation after interaction with the sample and for providing a number of wavelength demultiplexed radiation outputs or a number of different groups of wavelength demultiplexed radiation outputs, an integrated modulator for differently modulating the different demultiplexed radiation outputs or different groups of demultiplexed radiation outputs, and a multiplexer element for multiplexing the differently modulated demultiplexed radiation outputs or the differently grouped demultiplexed radiation outputs.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: July 31, 2018
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Roeland Baets, Danaë Delbeke, Günther Roelkens, Wim Bogaerts
  • Publication number: 20170082421
    Abstract: An integrated waveguide based spectrometer is described. The spectrometer comprises a sensing region for receiving multi-wavelength radiation for irradiating a sample in the sensing region, a wavelength demultiplexing element arranged for capturing said multi-wavelength radiation after interaction with the sample and for providing a number of wavelength demultiplexed radiation outputs or a number of different groups of wavelength demultiplexed radiation outputs, an integrated modulator for differently modulating the different demultiplexed radiation outputs or different groups of demultiplexed radiation outputs, and a multiplexer element for multiplexing the differently modulated demultiplexed radiation outputs or the differently grouped demultiplexed radiation outputs.
    Type: Application
    Filed: April 23, 2015
    Publication date: March 23, 2017
    Inventors: Roeland BAETS, Danaë DELBEKE, Günther ROELKENS, Wim BOGAERTS
  • Patent number: 9529154
    Abstract: The present disclosure generally relates to a method of optically coupling a photonic integrated circuit and an external optical component.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: December 27, 2016
    Assignees: IMEC VZW, Universiteit Gent
    Inventors: Geert Van Steenberge, Dries Van Thourhout, Günther Roelkens
  • Publication number: 20150268419
    Abstract: The present disclosure generally relates to a method of optically coupling a photonic integrated circuit and an external optical component.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 24, 2015
    Inventors: Geert Van Steenberge, Dries Van Thourhout, Günther Roelkens
  • Patent number: 8731349
    Abstract: The present invention relates to an integrated photonic device (100) operatively coupleable with an optical element (300) in a first coupling direction. The integrated photonic device (100) comprises an integrated photonic waveguide (120) and a grating coupler (130) that is adapted for diffracting light from the waveguide (120) into a second coupling direction different from the first coupling direction. The integrated photonics device also comprises a refractive element (110) disposed adjacent the grating coupler (130) and adapted to refract the light emerging from the grating coupler (130) in the second coupling direction into the first coupling direction.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 20, 2014
    Assignees: IMEC, Universiteit Gent
    Inventors: Jonathan Schrauwen, Stijn Scheerlinck, Günther Roelkens, Dries Van Thourhout
  • Patent number: 8676003
    Abstract: A photonics integrated circuit for processing radiation includes a first-dimensional grating coupler for coupling in radiation, a second two-dimensional grating coupler for coupling out radiation and a waveguide structure having two distinct waveguide arms for splitting radiation received from the first grating coupler and recombining radiation in the second grating coupler. A phase shifting means furthermore is provided for inducing an additional phase shift in at least one of the two distinct waveguide arms thereby inducing a relative phase shift of ? between the two distinct waveguide arms so as to provide a TE/TM polarization switch for radiation between the first grating coupler and the second grating coupler.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 18, 2014
    Assignees: Universiteit Gent, IMEC
    Inventors: Günther Roelkens, Diedrick Vermeulen
  • Patent number: 8642941
    Abstract: Photonic structures and methods of operating the photonic structures are disclosed. In one embodiment, the photonic structure includes a detector configured to detect radiation of a first wavelength range. The radiation of the first wavelength range is received from an external radiation guide, and the detector is substantially transparent to radiation of a second wavelength range that differs from the first wavelength range. The photonic structure further includes a coupling structure configured to free space couple out of the photonic structure radiation of the second wavelength range. The photonic structure further includes a guiding structure configured to optically guide the radiation of the second wavelength range through the detector.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 4, 2014
    Assignees: IMEC, Universiteit Gent
    Inventors: Diedrik Vermeulen, Günther Roelkens
  • Publication number: 20120207428
    Abstract: A photonics integrated circuit for processing radiation includes a first-dimensional grating coupler for coupling in radiation, a second two-dimensional grating coupler for coupling out radiation and a waveguide structure having two distinct waveguide arms for splitting radiation received from the first grating coupler and recombining radiation in the second grating coupler. A phase shifting means furthermore is provided for inducing an additional phase shift in at least one of the two distinct waveguide arms thereby inducing a relative phase shift of ? between the two distinct waveguide arms so as to provide a TE/TM polarization switch for radiation between the first grating coupler and the second grating coupler.
    Type: Application
    Filed: October 27, 2010
    Publication date: August 16, 2012
    Inventors: Günther Roelkens, Diedrick Vermeulen
  • Publication number: 20110278441
    Abstract: Photonic structures and methods of operating the photonic structures are disclosed. In one embodiment, the photonic structure includes a detector configured to detect radiation of a first wavelength range. The radiation of the first wavelength range is received from an external radiation guide, and the detector is substantially transparent to radiation of a second wavelength range that differs from the first wavelength range. The photonic structure further includes a coupling structure configured to free space couple out of the photonic structure radiation of the second wavelength range. The photonic structure further includes a guiding structure configured to optically guide the radiation of the second wavelength range through the detector.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 17, 2011
    Applicants: UNIVERSITEIT GENT, IMEC
    Inventors: Diedrik Vermeulen, Günther Roelkens
  • Publication number: 20110075970
    Abstract: The present invention relates to an integrated photonic device (100) operatively coupleable with an optical element (300) in a first coupling direction. The integrated photonic device (100) comprises an integrated photonic waveguide (120) and a grating coupler (130) that is adapted for diffracting light from the waveguide (120) into a second coupling direction different from the first coupling direction. The integrated photonics device also comprises a refractive element (110) disposed adjacent the grating coupler (130) and adapted to refract the light emerging from the grating coupler (130) in the second coupling direction into the first coupling direction.
    Type: Application
    Filed: May 19, 2009
    Publication date: March 31, 2011
    Applicants: IMEC, UNIVERSITEIT GENT
    Inventors: Jonathan Schrauwen, Stijn Scheerlinck, Günther Roelkens, Dries Van Thourhout