Patents by Inventor Gabriel E. Torres

Gabriel E. Torres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220078380
    Abstract: A system having: a processor and addressable memory, where the processor is configured to: receive a geographic data defining a selected geographical area; receive an operating mode associated with the selected geographical area, where the received operating mode restricts at least one of: a viewing of a UAV data and a recording of the UAV data by at least one user device; and broadcast the UAV data to the at least one user device based on the selected geographical area and the received operating mode.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 10, 2022
    Inventors: Gabriel E. Torres, Steven B. Chambers, Carlos Augusto Coronado, Gordon Bryan Hudson, Peter De Baets
  • Patent number: 11230374
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 25, 2022
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Patent number: 11220170
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: January 11, 2022
    Assignee: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Patent number: 11153537
    Abstract: A system having: a processor and addressable memory, where the processor is configured to: receive a geographic data defining a selected geographical area; receive an operating mode associated with the selected geographical area, where the received operating mode restricts at least one of: a viewing of a UAV data and a recording of the UAV data by at least one user device; and broadcast the UAV data to the at least one user device based on the selected geographical area and the received operating mode.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: October 19, 2021
    Assignee: AEROVIRONMENT, INC.
    Inventors: Gabriel E. Torres, Steven B. Chambers, Carlos Augusto Coronado, Gordon Bryan Hudson, Peter De Baets
  • Publication number: 20210009265
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Application
    Filed: April 7, 2020
    Publication date: January 14, 2021
    Applicant: AEROVIRONMENT, INC.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Publication number: 20210001700
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Patent number: 10647423
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: May 12, 2020
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Publication number: 20190233100
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Application
    Filed: December 17, 2018
    Publication date: August 1, 2019
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Patent number: 10155588
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Grant
    Filed: March 4, 2018
    Date of Patent: December 18, 2018
    Assignee: AeroVironment Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Publication number: 20180305013
    Abstract: A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
    Type: Application
    Filed: March 4, 2018
    Publication date: October 25, 2018
    Applicant: AeroVironment, Inc.
    Inventors: Christopher E. Fisher, Phillip T. Tokumaru, Marc L. Schmalzel, John Peter Zwaan, Jeremy D. Tyler, Justin B. McAllister, Gabriel E. Torres, Pavel Belik
  • Publication number: 20160375999
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Application
    Filed: May 25, 2016
    Publication date: December 29, 2016
    Applicant: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Publication number: 20160373699
    Abstract: A system having: a processor and addressable memory, where the processor is configured to: receive a geographic data defining a selected geographical area; receive an operating mode associated with the selected geographical area, where the received operating mode restricts at least one of: a viewing of a UAV data and a recording of the UAV data by at least one user device; and broadcast the UAV data to the at least one user device based on the selected geographical area and the received operating mode.
    Type: Application
    Filed: October 20, 2014
    Publication date: December 22, 2016
    Inventors: Gabriel E. Torres, Steven B. Chambers, Carlos Augusto Coronado, Gordon Bryan Hudson, Peter De Baets
  • Patent number: 9365088
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: June 14, 2016
    Assignee: AeroVironment, Inc.
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye
  • Publication number: 20130256464
    Abstract: In one possible embodiment, an amphibious unmanned aerial vehicle is provided, which includes a fuselage comprised of a buoyant material. Separators within the fuselage form separate compartments within the fuselage. Mounts associated with the compartments for securing waterproof aircraft components within the fuselage. The compartments each have drainage openings in the fuselage extending from the interior of the fuselage to the exterior of the fuselage.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 3, 2013
    Inventors: Pavel Belik, Thomas Szarek, Gabriel E. Torres, Vernon P. Fraye