Patents by Inventor Gabriel F. Benavides

Gabriel F. Benavides has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815074
    Abstract: Scalable power processing units (PPUs) for Hall-effect thrusters (HETs) and terrestrial systems are disclosed. A technique for current estimation may be employed on each output of parallel isolated discharge supply modules (DSMs) to force proper current/load sharing between the DSMs. A flyback power supply may be used that performs the dual functions of a cathode keeper plasma ignitor and sustainer. The flyback power supply may be tuned for a high no-load direct current (DC) output voltage to achieve cathode keeper ignition rather than requiring a separate ignitor supply, which reduces circuit complexity. To address requirements for higher voltage DC ignition than are achievable with a flyback power supply alone, a supplemental DC ignitor may be placed in parallel with the flyback power supply of some embodiments. Such simplified PPU architectures may provide a high efficiency, low part count, scalable architecture suitable for more compact and lower cost system designs.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: November 14, 2023
    Assignee: United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Gabriel F. Benavides, Luis R. Pinero, Corey R. Rhodes, Arthur Birchenough
  • Patent number: 11540381
    Abstract: High propellant throughput Hall-effect thrusters (HETs) and components thereof are disclosed. A compact and high propellant throughput HET has an improved magnetic circuit that mostly shields the discharge chamber walls from high-energy ionized propellant, low-profile sacrificial pole covers to delay magnetic pole erosion, a unique discharge chamber subassembly, a mechanically crimped cathode emitter retainer to increase efficiency, a center-mounted hollow cathode, or a combination thereof. Such feature(s) may balance propellant throughput and thruster performance, minimize the volume of the thruster envelope, and/or simplify the thruster assembly.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 27, 2022
    Inventors: Gabriel F. Benavides, Hani Kamhawi, Timothy R. Verhey
  • Patent number: 9242747
    Abstract: It is disclosed herein an innovative concept for in-space propulsion for future Air Force, NASA and commercial systems having mass and power scalability over a wide range and using easily-handled advanced propellants. The invention combines the fields of microdischarge physics and nonequilibrium plasmadynamics to reduce dramatically the size of electric thrusters by 1-2 orders of magnitude, which when coupled with micronozzles that are electrically conducting or electrically insulating result in high thrust and high thruster efficiency, and will enable scalable, low-cost, long-life distributable propulsion for control of femtosats, picosats, nanosats, microsats, and space structures. The concept is scalable from power levels of 1 W to several kilowatts with thrust efficiency approaching 60%.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: January 26, 2016
    Assignee: CU Aerospace, LLC
    Inventors: Rodney L. Burton, Gabriel F. Benavides, David L. Carroll
  • Patent number: 7926257
    Abstract: A pulsed plasma thruster provides for an advanced lightweight design with solid propellant and predominately electromagnetic thrust in a coaxial geometry. Electromagnetic forces are generated in a plasma by current flowing from a small central electrode to an electrically conducting diverging nozzle electrode. The thruster employs a series of electric current pulses of limited duration and varying frequency between the pair of electrodes creating a series of electric arcs. The electric arcs pass over a propellant surface located between the electrodes, forming a plasma, which is then exhausted from the device to produce thrust. The thruster maintains a low plasma resistance and cavity pressure, which in turn yields strong electromagnetic body forces, resulting in a high efficiency and consistent pulse-to-pulse performance.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 19, 2011
    Assignee: CU Aerospace, LLC
    Inventors: Rodney L. Burton, Gabriel F. Benavides, Julia K. Laystrom
  • Patent number: 7926258
    Abstract: A pulsed plasma thruster provides for an advanced lightweight design with solid propellant and predominately electromagnetic thrust in a coaxial geometry. Electromagnetic forces are generated in a plasma by current flowing from a small central electrode to an electrically conducting diverging nozzle electrode. The thruster employs a series of electric current pulses of limited duration and varying frequency between the pair of electrodes creating a series of electric arcs. The electric arcs pass over a propellant surface located between the electrodes, forming a plasma, which is then exhausted from the device to produce thrust. The thruster maintains a low plasma resistance and cavity pressure, which in turn yields strong electromagnetic body forces, resulting in a high efficiency and consistent pulse-to-pulse performance.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 19, 2011
    Assignee: CU Aerospace, LLC
    Inventors: Rodney L. Burton, Gabriel F. Benavides, Julia K. Laystrom