Patents by Inventor Gabriel Schneider

Gabriel Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7110101
    Abstract: A method and a device are disclosed for establishing actual changes and intended changes of the spatial angle of a main axis (e) of a sensor or effector attached to a receiver (4.1). The receiver (4.1) is directly rotatable around the first axis of rotation (I) and indirectly rotatable around at least one further axis of rotation (b, a). An optical-electronic angular measurement device (5) having at least two measurement axes is attached to the receiver (4.1). For a first axis of rotation (I, b, a), a rotation is performed around this first axis of rotation (I, b, a), while any rotation around further axes of rotation is prevented. After each rotation step, a first actual change of the spatial angle of the main axis (e) is detected and stored by the angular measurement device (5), and a first intended change of the spatial angle of the main axis (e) is provided and stored by a coder device (10). During use of the device, a carrier base (8), onto which the receiver (4.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: September 19, 2006
    Inventor: Gabriel Schneider
  • Publication number: 20030231299
    Abstract: A method and a device are disclosed for establishing actual changes and intended changes of the spatial angle of a main axis (e) of a sensor or effector attached to a receiver (4.1). The receiver (4.1) is directly rotatable around the first axis of rotation (I) and indirectly rotatable around at least one further axis of rotation (b, a). An optical-electronic angular measurement device (5) having at least two measurement axes is attached to the receiver (4.1). For a first axis of rotation (I, b, a), a rotation is performed around this first axis of rotation (I, b, a), while any rotation around further axes of rotation is prevented. After each rotation step, a first actual change of the spatial angle of the main axis (e) is detected and stored by the angular measurement device (5), and a first intended change of the spatial angle of the main axis (e) is provided and stored by a coder device (10). During use of the device, a carrier base (8), onto which the receiver (4.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 18, 2003
    Applicant: Oerlikon Contraves AG
    Inventor: Gabriel Schneider
  • Publication number: 20030183070
    Abstract: A method and a device (20) are described for compensating firing errors of a gun having a weapon barrel (10.2). Firing errors, which are caused by static gun geometry errors, which influence the position of the weapon barrel (10.2) during aiming of the weapon barrel (10.2) at aiming values, are compensated. For this purpose, the weapon barrel (10.2) is brought into measurement positions in steps by rotation around an axis. Using suitable devices of a measurement facility, an intended value, which describes the intended position of the weapon barrel (10.2), and an actual value, which describes the actual position of the weapon barrel (10.2), are detected at each measurement position. A difference between the actual value and the intended value, defined as an error value, is then calculated. Correction values are established from multiple error values of the measurement positions and the correction values are taken into consideration during later aiming of the weapon barrel (10.2).
    Type: Application
    Filed: January 14, 2003
    Publication date: October 2, 2003
    Applicant: Oerlikon Contraves AG
    Inventors: Gabriel Schneider, Michael Gerber, Urs Meyer
  • Patent number: 6591732
    Abstract: A method and device for cooling a gun barrel wherein coolant is provided to the gun barrel via a nozzle arranged at the downstream end of a pressure feed line arrangement. The coolant is originally conveyed from a reservoir into a pressure cylinder, while the pressure feed line between the pressure cylinder and the nozzle is closed. Thereafter, the coolant in the pressure cylinder is placed under a predefined operating pressure. Prior to firing a round, the pressure feed line is opened, so that the coolant flows to the gun barrel before firing. When firing a shot, the coolant in the gun barrel is compressed to a pressure above the predetermined operating pressure by the firing gases and pushed out of the gun barrel. In the process, the coolant is expanded into a buffer reservoir adjacent to the nozzle and is injected back into the gun barrel after the gas pressure built up has been reduced to the predetermined operating pressure.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 15, 2003
    Assignee: Oerlikon Conatraves AG
    Inventors: Michael Gerber, Gabriel Schneider
  • Patent number: 6497171
    Abstract: The invention relates to a method and a device for the correction of dynamic gun errors. Dynamic gun errors are caused by the movement of a gun tube muzzle area (3) of a gun (1) in the course of continuous firing. To correct these errors, a measurement of the movement of a gun tube muzzle area (3) of a gun (1) is performed during continuous firing for obtaining measured signals. The measured signals are used for correcting the azimuth and elevation of the gun tube (2) in order to compensate the movement of a gun tube muzzle area (3).
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: December 24, 2002
    Assignee: Oerlikon Contraves AG
    Inventors: Michael Gerber, Gabriel Schneider
  • Publication number: 20020083823
    Abstract: A method and device for cooling a gun barrel wherein coolant is provided to the gun barrel via a nozzle arranged at the downstream end of a pressure feed line arrangement. The coolant is originally conveyed from a reservoir into a pressure cylinder, while the pressure feed line between the pressure cylinder and the nozzle is closed. Thereafter, the coolant in the pressure cylinder is placed under a predefined operating pressure. Prior to firing a round, the pressure feed line is opened, so that the coolant flows to the gun barrel before firing. When firing a shot, the coolant in the gun barrel is compressed to a pressure above the predetermined operating pressure by the firing gases and pushed out of the gun barrel. In the process, the coolant is expanded into a buffer reservoir adjacent to the nozzle and is injected back into the gun barrel after the gas pressure built up has been reduced to the predetermined operating pressure.
    Type: Application
    Filed: October 31, 2001
    Publication date: July 4, 2002
    Applicant: Oerlikon Contraves AG
    Inventors: Michael Gerber, Gabriel Schneider
  • Publication number: 20020074486
    Abstract: Method and device for correcting shooting errors. Such shooting errors are to be corrected that are occasioned by a movement of a barrel (12) of a gun (10) out of its nominal position in consequence of a movement of a lower carriage (18) when a shot is being fired. By means of an angle meter element, an error angle is determined along which the lower carriage rotates about the vertical axis (Z). An error signal is obtained from the error angle. Said error signal is utilized to change the azimuth of the barrel of the weapon (12) in order to compensate an error of the azimuth and of the elevation occasioned by the rotation of the lower carriage (18) about the vertical axis (Z).
    Type: Application
    Filed: October 15, 2001
    Publication date: June 20, 2002
    Inventors: Michael Gerber, Gabriel Schneider
  • Publication number: 20010039874
    Abstract: The invention relates to a method and a device for the correction of dynamic gun errors. Dynamic gun errors are caused by the movement of a gun tube muzzle area (3) of a gun (1) in the course of continuous firing. To correct these errors, a measurement of the movement of a gun tube muzzle area (3) of a gun (1) is performed during continuous firing for obtaining measured signals. The measured signals are used for correcting the azimuth and elevation of the gun tube (2) in order to compensate the movement of a gun tube muzzle area (3).
    Type: Application
    Filed: January 24, 2001
    Publication date: November 15, 2001
    Inventors: Michael Gerber, Gabriel Schneider
  • Patent number: 6311602
    Abstract: The service life of gun barrels of firearms with a high cyclic rate can be extended by means of the cooling device of the invention. To this end, coolant (7) is conveyed from a reservoir (6) into a pressure cylinder (10) by drawing up a hydraulic cylinder (13), while the feed line (14) to the gun barrel is closed. Thereafter the hydraulic piston (13) is moved in the opposite direction by a pressure reversal and the coolant (7) in the pressure cylinder (10) is placed under a defined operating pressure. Prior to triggering a volley, the feed line (14) is opened, so that the coolant (7) can flow via the feed line (14) and the nozzle (16) to the gun barrel (1). The coolant (7) is pushed back by the gas pressure respectively being created when a shot is fired, and following the lowering of the gas pressure to the operating pressure, it is again injected into the gun barrel (1).
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: November 6, 2001
    Assignee: Oerlikon Contraves AG
    Inventors: Michael Gerber, Gabriel Schneider