Patents by Inventor Gad Neumann

Gad Neumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7961763
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 14, 2011
    Assignee: Applied Materials South East Asia Pte. Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 7843559
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 30, 2010
    Assignee: Applied Materials South East Asia Pte. Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 7796807
    Abstract: A method and apparatus for inspecting the surface of articles, such as chips and wafers, for defects, includes a first phase of optically examining the complete surface of the article inspected at a relatively high speed and with a relatively low spatial resolution, and a second phase of optically examining with a relatively high spatial resolution only the suspected locations for the presence or absence of a defect therein.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: September 14, 2010
    Assignee: Applied Materials, Israel Ltd.
    Inventors: David Alumot, Gad Neumann, Rivka Sherman, Ehud Tirosh
  • Patent number: 7633041
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 15, 2009
    Assignee: Applied Materials South East Asia Pte, Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20090148033
    Abstract: A method and apparatus for inspecting the surface of articles, such as chips and wafers, for defects, includes a first phase of optically examining the complete surface of the article inspected at a relatively high speed and with a relatively low spatial resolution, and a second phase of optically examining with a relatively high spatial resolution only the suspected locations for the presence or absence of a defect therein.
    Type: Application
    Filed: January 15, 2009
    Publication date: June 11, 2009
    Inventors: David Alumot, Gad Neumann, Rivka Sherman, Ehud Tirosh
  • Patent number: 7525659
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: April 28, 2009
    Assignee: Negevtech Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 7499583
    Abstract: A method and apparatus for inspecting the surface of articles, such as chips and wafers, for defects, includes a first phase of optically examining the complete surface of the article inspected at a relatively high speed and with a relatively low spatial resolution, and a second phase of optically examining with a relatively high spatial resolution only the suspected locations for the presence or absence of a defect therein.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: March 3, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: David Alumot, Gad Neumann, Rivka Sherman, Ehud Tirosh
  • Patent number: 7477383
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 13, 2009
    Assignee: Negevtech Ltd.
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 7260298
    Abstract: A fiber optical illumination delivery system, which is effective in reducing the effects of source coherence. The system preferably utilizes either a single bundle of optical fibers, or serial bundles of optical fibers. In the single bundle embodiment, the differences in optical lengths between different fibers of the bundle is preferably made to be equal to even less than the coherence length of the source illumination. In the serial bundle embodiment, the fibers in the other bundle are arranged as groups of fibers of the same length, and it is the difference in lengths of these groups which is made equal to, or even more preferably, less than the overall difference in length between the shortest and the longest fibers in the other bundle. Both of these fiber systems enable construction of illumination systems delivering a higher level of illumination, but without greatly affecting the coherence breaking abilities of the system, thus enabling a generally more applicable system to be constructed.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: August 21, 2007
    Assignee: Negevtech Ltd.
    Inventors: Dov Furman, Gad Neumann, Noam Dotan
  • Patent number: 7180586
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: February 20, 2007
    Assignee: Negevtech Ltd.
    Inventors: Gad Neumann, Noam Dotan
  • Publication number: 20070019856
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 25, 2007
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20070013903
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: September 21, 2006
    Publication date: January 18, 2007
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20060244958
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: June 28, 2006
    Publication date: November 2, 2006
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20060244957
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: June 28, 2006
    Publication date: November 2, 2006
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Publication number: 20060244956
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: June 28, 2006
    Publication date: November 2, 2006
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 6952491
    Abstract: A method and apparatus for inspecting the surface of articles, such as chips and wafers, for defects, includes a first phase of optically examining the complete surface of the article inspected at a relatively high speed and with a relatively low spatial resolution, and a second phase of optically examining with a relatively high spatial resolution only the suspected locations for the presence or absence of a defect therein.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: David Alumot, Gad Neumann, Rivka Sherman, Ehud Tirosh
  • Publication number: 20050180707
    Abstract: A fiber optical illumination delivery system, which is effective in reducing the effects of source coherence. The system preferably utilizes either a single bundle of optical fibers, or serial bundles of optical fibers. In the single bundle embodiment, the differences in optical lengths between different fibers of the bundle is preferably made to be equal to even less than the coherence length of the source illumination. In the serial bundle embodiment, the fibers in the other bundle are arranged as groups of fibers of the same length, and it is the difference in lengths of these groups which is made equal to, or even more preferably, less than the overall difference in length between the shortest and the longest fibers in the other bundle. Both of these fiber systems enable construction of illumination systems delivering a higher level of illumination, but without greatly affecting the coherence breaking abilities of the system, thus enabling a generally more applicable system to be constructed.
    Type: Application
    Filed: April 1, 2005
    Publication date: August 18, 2005
    Inventors: Dov Furman, Gad Neumann, Noam Dotan
  • Publication number: 20050110987
    Abstract: Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described.
    Type: Application
    Filed: December 23, 2004
    Publication date: May 26, 2005
    Inventors: Dov Furman, Gad Neumann, Mark Wagner, Noam Dotan, Ram Segal, Shai Silberstein
  • Patent number: 6892013
    Abstract: A fiber optical illumination delivery system, which is effective in reducing the effects of source coherence. The system preferably utilizes either a single bundle of optical fibers, or serial bundles of optical fibers. In the single bundle embodiment, the differences in optical lengths between different fibers of the bundle is preferably made to be equal to even less than the coherence length of the source illumination. In the serial bundle embodiment, the fibers in the other bundle are arranged as groups of fibers of the same length, and it is the difference in lengths of these groups which is made equal to, or even more preferably, less than the overall difference in length between the shortest and the longest fibers in the other bundle. Both of these fiber systems enable construction of illumination systems delivering a higher level of illumination, but without greatly affecting the coherence breaking abilities of the system, thus enabling a generally more applicable system to be constructed.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: May 10, 2005
    Assignee: Negevtech Ltd.
    Inventors: Dov Furman, Gad Neumann, Noam Dotan
  • Publication number: 20040263834
    Abstract: A method and apparatus for inspecting the surface of articles, such as chips and wafers, for defects, includes a first phase of optically examining the complete surface of the article inspected at a relatively high speed and with a relatively low spatial resolution, and a second phase of optically examining with a relatively high spatial resolution only the suspected locations for the presence or absence of a defect therein.
    Type: Application
    Filed: May 24, 2004
    Publication date: December 30, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: David Alumot, Gad Neumann, Rivka Sherman, Ehud Tirosh