Patents by Inventor Gaetan L. Mathieu

Gaetan L. Mathieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100083489
    Abstract: Carbon nanotube columns each comprising carbon nanotubes can be utilized as electrically conductive contact probes. The columns can be grown, and parameters of a process for growing the columns can be varied while the columns grow to vary mechanical characteristics of the columns along the growth length of the columns. Metal can then be deposited inside and/or on the outside of the columns, which can enhance the electrical conductivity of the columns. The metalized columns can be coupled to terminals of a wiring substrate. Contact tips can be formed at or attached to ends of the columns. The wiring substrate can be combined with other electronic components to form an electrical apparatus in which the carbon nanotube columns can function as contact probes.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 8, 2010
    Inventors: Benjamin N. Eldridge, Treliant Fang, Gaetan L. Mathieu, Onnik Yaglioglu
  • Publication number: 20100065963
    Abstract: Contact structures for a variety of electronic components can be formed to have primarily elastic properties. The contact structures can be free standing, and can be coupled to a variety of different electronic components such as a probe card assembly, a semiconductor wafer or dies, an interposer, or the like. Tips of the contact structures can have a topology that facilities contact with another electronic component.
    Type: Application
    Filed: July 9, 2009
    Publication date: March 18, 2010
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu
  • Patent number: 7671614
    Abstract: Probes of a probe card assembly can be adjusted with respect to an element of the probe card assembly, which can be an element of the probe card assembly that facilitates mounting of the probe card assembly to a test apparatus. The probe card assembly can then be mounted in a test apparatus, and an orientation of the probe card assembly can be adjusted with respect to the test apparatus, such as a structural part of the test apparatus or a structural element attached to the test apparatus.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: March 2, 2010
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Eric D. Hobbs, Gaetan L. Mathieu, Makarand S. Shinde, Alexander H. Slocum
  • Patent number: 7658831
    Abstract: Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 9, 2010
    Assignee: FormFactor, Inc
    Inventors: Gaetan L. Mathieu, Treliant Fang, Eric D. Hobbs
  • Patent number: 7659736
    Abstract: A wafer test assembly includes multiple probe head substrates arranged like tiles with connectors attached to one side and probes supported on the opposing side. In one embodiment, flexible cable connectors directly connect the connectors on the probe head tile to a test head, while in another embodiment the flexible cables connect the probe head tile to a PCB providing horizontal routing to test head connectors. In one embodiment, leveling pins provide a simplified support structure connecting to a retaining element attached to the tiles to provide for applying a push-pull leveling force. A test head connector interface frame enables rearrangement of connectors between the test head and the probe card to provide for both full wafer contact or partial wafer contact. The test head connectors are rearranged by being slidable on rails, or pluggable and unpluggable enabling movement over a range of positions.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: February 9, 2010
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Barbara Vasquez, Makarand S. Shinde, Gaetan L. Mathieu, A. Nicholas Sporck
  • Publication number: 20100000080
    Abstract: A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
    Type: Application
    Filed: June 3, 2009
    Publication date: January 7, 2010
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Eric D. Hobbs, Gaetan L. Mathieu, Makarand S. Shinde, Alexander H. Slocum, A. Nicholas Sporck, Thomas N. Watson
  • Patent number: 7642794
    Abstract: The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 5, 2010
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Ken S. Matsubayashi, Richard A. Larder, Makarand S. Shinde, Gaetan L. Mathieu
  • Publication number: 20090291573
    Abstract: A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly to (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are “stacked up” so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu
  • Patent number: 7621044
    Abstract: Resilient spring contact structures are manufactured by plating the contact structures on a reusable mandrel, as opposed to forming the contact structures on sacrificial layers that are later etched away. In one embodiment, the mandrel includes a form or mold area that is inserted through a plated through hole in a substrate. Plating is then performed to create the spring contact on the mold area of the mandrel as well as to attach the spring contact to the substrate. In a second embodiment, the mandrel includes a form that is initially plated to form the resilient contact structure and then attached to a region of a substrate without being inserted through the substrate. Attachment in the second embodiment can be achieved during the plating process used to form the spring contact, or by using a conductive adhesive or solder either before or after releasing the spring contact from the mandrel.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: November 24, 2009
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Gaetan L. Mathieu
  • Publication number: 20090286429
    Abstract: Microelectronic contact structures are fabricated by separately forming, then joining together, various components thereof. Each contact structure has three components: a “post” component, a “beam” component, and a “tip” component. The resulting contact structure, mounted to an electronic component, is useful for making an electrical connection with another electronic component. The post component can be fabricated on a sacrificial substrate, joined to the electronic component and its sacrificial substrate removed. Alternatively, the post component can be formed on the electronic component. The beam and tip components can each be fabricated on a sacrificial substrate. The beam component is joined to the post component and its sacrificial substrate is removed, and the tip component is joined to the beam component and its sacrificial substrate is removed.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu
  • Publication number: 20090263986
    Abstract: An interconnection element of a spring (body) including a first resilient element with a first contact region and a second contact region and a first securing region and a second resilient element, with a third contact region and a second securing region. The second resilient element is coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region. The interconnection, in one aspect, is of a size suitable for directly contacting a semiconductor device. A large substrate with a plurality of such interconnection elements can be used as a wafer-level contactor. The interconnection element, in another aspect, is of a size suitable for contacting a packaged semiconductor device, such as in an LGA package.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 22, 2009
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Gary W. Grube, Richard A. Larder
  • Patent number: 7601039
    Abstract: An electronic interconnection apparatus can include a sacrificial substrate, which can include first trenches and second trenches formed in the sacrificial substrate. The first trenches can be disposed below a surface of the sacrificial substrate, and the second trenches can be disposed below the first trenches. First sidewalls can connect the surface and the first trenches, and the first sidewalls can be angled with respect to the surface and the first trenches. Second sidewalls can connect the first trenches and the second trenches, and the second sidewalls can be angled with respect to the first trenches and the second trenches. Spring contact elements can reside upon the sacrificial substrate. Each of the spring contact elements can have a first portion disposed on the surface, a second portion disposed on one of the first trenches, and a third portion disposed on one of the second trenches.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: October 13, 2009
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu
  • Patent number: 7592821
    Abstract: A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: September 22, 2009
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Eric D. Hobbs, Gaetan L. Mathieu, Makarand S. Shinde, Alexander H. Slocum, A. Nicholas Sporck, Thomas N. Watson
  • Patent number: 7579269
    Abstract: Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined in masking layers deposited on a surface of a substrate which may be an electronic component such as an active semiconductor device. Each spring contact element has a base end, a contact end, and a central body portion. The contact end is offset in the z-axis (at a different height) and in at least one of the x and y directions from the base end. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the substrate. The spring contact elements make temporary (i.e., pressure) or permanent (e.g., joined by soldering or brazing or with a conductive adhesive) connections with terminals of another electronic component to effect electrical connections therebetween.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: August 25, 2009
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Igor Y. Khandros, Gaetan L. Mathieu, David V. Pedersen
  • Publication number: 20090197484
    Abstract: A composite spring contact structure includes a structural component and a conduction component distinct from each other and having differing mechanical and electrical characteristics. The structural component can include a group of carbon nanotubes. A mechanical characteristic of the composite spring contact structure can be dominated by a mechanical characteristic of the structural component, and an electrical characteristic of the composite spring contact structure can be dominated by an electrical characteristic of the conduction component. Composite spring contact structures can be used in probe cards and other electronic devices. Various ways of making contact structures are also disclosed.
    Type: Application
    Filed: April 10, 2009
    Publication date: August 6, 2009
    Inventors: Jimmy K. Chen, Treliant Fang, Michael Harburn, Igor Y. Khandros, Rodney I. Martens, Gaetan L. Mathieu, Alexander Slocum, Onnik Yaglioglu
  • Patent number: 7560941
    Abstract: The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: July 14, 2009
    Assignee: FormFactor, Inc.
    Inventors: Rod Martens, Benjamin N. Eldridge, Gary W. Grube, Ken S. Matsubayashi, Richard A. Larder, Makarand S. Shinde, Gaetan L. Mathieu
  • Patent number: 7555836
    Abstract: A method of forming an interconnection, including a spring contact element, by lithographic techniques. In one embodiment, the method includes applying a masking material over a first portion of a substrate, the masking material having an opening which will define a first portion of a spring structure, depositing a structure material (e.g., conductive material) in the opening, and overfilling the opening with the structure material, removing a portion of the structure material, and removing a first portion of the masking material. In this embodiment, at least a portion of the first portion of the spring structure is freed of masking material. In one aspect of the invention, the method includes planarizing the masking material layer and structure material to remove a portion of the structure material. In another aspect, the spring structure formed includes one of a post portion, a beam portion, and a tip structure portion.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: July 7, 2009
    Assignee: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Gary W. Grube
  • Patent number: 7553165
    Abstract: An interconnection element of a spring (body) including a first resilient element with a first contact region and a second contact region and a first securing region and a second resilient element, with a third contact region and a second securing region. The second resilient element is coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region. The interconnection, in one aspect, is of a size suitable for directly contacting a semiconductor device. A large substrate with a plurality of such interconnection elements can be used as a wafer-level contactor. The interconnection element, in another aspect, is of a size suitable for contacting a packaged semiconductor device, such as in an LGA package.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: June 30, 2009
    Assignee: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Gary W. Grube, Richard A. Larder
  • Publication number: 20090158586
    Abstract: A probe card assembly comprises multiple probe substrates attached to a mounting assembly. Each probe substrate includes a set of probes, and together, the sets of probes on each probe substrate compose an array of probes for contacting a device to be tested. Adjustment mechanisms are configured to impart forces to each probe substrate to move individually each substrate with respect to the mounting assembly. The adjustment mechanisms may translate each probe substrate in an “x,” “y,” and/or “z” direction and may further rotate each probe substrate about any one or more of the forgoing directions. The adjustment mechanisms may further change a shape of one or more of the probe substrates. The probes can thus be aligned and/or planarized with respect to contacts on the device to be tested.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 25, 2009
    Inventors: Eric D. Hobbs, Benjamin N. Eldridge, Lunyu Ma, Gaetan L. Mathieu, Steven T. Murphy, Makarand S. Shinde, Alexander H. Slocum
  • Patent number: 7550842
    Abstract: In an integrated circuit assembly, know good die (KGD) are assembled on a substrate. Interconnect elements electrically connect pads on a die attached to the substrate to traces or other electrical conductors on the substrate or to pads on another die attached to the substrate. The substrate may have one or more openings, exposing pads of the die. The assembly may comprise one or more dice.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: June 23, 2009
    Assignee: FormFactor, Inc.
    Inventors: Igor Y. Khandros, Benjamin N. Eldridge, Charles A. Miller, A. Nicholas Sporck, Gary W. Grube, Gaetan L. Mathieu