Patents by Inventor Ganesh Kumar Mohanur Raghunathan

Ganesh Kumar Mohanur Raghunathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230394853
    Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 7, 2023
    Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN
  • Patent number: 11694331
    Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: July 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
  • Patent number: 11688188
    Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Parijat Prakash Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Sumit Kumar Jha, Aditya Sista, Narasimha Murthy Chandan
  • Patent number: 11663722
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: May 30, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
  • Publication number: 20220261992
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 18, 2022
    Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
  • Publication number: 20220164952
    Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.
    Type: Application
    Filed: January 7, 2022
    Publication date: May 26, 2022
    Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
  • Patent number: 11321839
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 3, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
  • Patent number: 11232561
    Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: January 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
  • Publication number: 20210240966
    Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 5, 2021
    Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN
  • Patent number: 11017207
    Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 25, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Parijat Prakash Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Sumit Kumar Jha, Aditya Sista, Narasimha Murthy Chandan
  • Publication number: 20210090251
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 25, 2021
    Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
  • Publication number: 20200234441
    Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 23, 2020
    Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
  • Publication number: 20200074146
    Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 5, 2020
    Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN
  • Patent number: 9561008
    Abstract: In one embodiment, a method of displaying image in an imaging system is provided. The method comprises steps obtaining an image from an radiation detector, receiving a selection for orientation from a user, mechanically rotating the radiation detector based on the selection for orientation and performing a digital image rotation on the image complementing the mechanical rotation of the radiation detector such that the image is rotated to the orientation selected by the user and displaying the image.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: February 7, 2017
    Assignee: General Electric Company
    Inventors: Antony Kalugumalai Neethimanickam, Ganesh Kumar Mohanur Raghunathan
  • Publication number: 20120163536
    Abstract: In one embodiment, a method of displaying image in an imaging system is provided. The method comprises steps obtaining an image from an radiation detector, receiving a selection for orientation from a user, mechanically rotating the radiation detector based on the selection for orientation and performing a digital image rotation on the image complementing the mechanical rotation of the radiation detector such that the image is rotated to the orientation selected by the user and displaying the image.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 28, 2012
    Inventors: Antony Kalugumalai Neethimanickam, Ganesh Kumar Mohanur Raghunathan